2D Fourier series

2D function with periodicity vectors @ and ds:
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with reciprocal vectors I;j defined by d’il;j = ;5.
For a real function, this can be rewritten
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where the real coefficients are given by
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Fitting

Without symmetry

We fit the coefficient Fj; of the Fourier series to the dataset f(#%) = f;. The
least square fitting corresponds to the minimization of the cost function
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The minimization leads to the linear equations
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where the matrix A and the vector B are defined by
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With symmetry operations

The function f obeys the set of symmetry operations (R, Us):
f(RsT+ uy) = f(7), V.

To fit its coefficients, we consider the symmetrized function
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with S the total number of symmetry operations. The least-square fitting leads

to the same linear equations as system (3), with the matrix A and the vector B
now defined from the quantity
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The symmetrized Fourier series (4) can be written back in a regular series
like (1) using the relation
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