
Getting Started

J.J. Germishuizen

June 28, 2006

Contents

1. Introduction 1

2. The Fortran XML parser 2

2.1. Testfile for parser . 2

3. The xmlreader module 2

3.1. Reading addresbook entries . 3

4. Summary 3

A. Project files 4

B. Testprogram sourcecode - readfile.f90 4

C. Main program - tst addressbook.f90 5

1. Introduction

Probably you have tried some of the source files immediatly after download. Got stuck
and now look for help. This Getting Started will introduce the XML library written in
Fortran [1]-[2], and is devided into three parts:

• compiling and testing the parser,

• using the xmlreader module to generate a reading subroutine and

• a simple addressbook example.

The Fortran parser allows programmers to access xml files without using mixed pro-
gramming technices. An advantage of the parser is the xmlreader program which au-
tomatically generates a reading subroutine. This attractive feature allows any user to
quickly get started using the parser. For each part a Fortran project needs to be created.
The projects and its source files are given in App. A.

1

2. The Fortran XML parser

2. The Fortran XML parser

The programe readfile demonstrates a basic use of the parser module. Read any .xml

and display all the tags found. How the program behaves when a certain tag is found is
explained in section 3. The readfile.f90 and xmlparse.f90 are the driver and xml-parser
library respectively. Variable fname in readfile.f90, of which the sourcecode is given in
App. B, should be changed to the filename of the xml-file. The parser is tested reading
the entries of an addressbook as given in section 2.1.

2.1. Testfile for parser

<?xml version="1.0"?>

<addressbook>

<Entry Surname="Meier">

<Name>Peter</Name>

<Street>Waldweg</Street>

<Code>10230</Code>

<City>Waldesruh</City>

<Tel>39840983</Tel>

<email>peter.meier@xml.com</email>

</Entry>

<Entry Surname="Cornelissen">

<Name>Johanette</Name>

<Street>Suikerbossie</Street>

<Code>7646</Code>

<City>Brakpan</City>

<Tel>22879631</Tel>

<email>johanette.cornelissen@xml.com</email>

</Entry>

</addressbook>

3. The xmlreader module

Once you have designed the structure of the XML file, a reading subroutine is necessary
to treat the input data accordingly. This can be time consuming. The xmlreader module
is a help to automatically generate such a reading subroutine. A template1 of the actual
data has to be created by the user that will be the input for the xmlreader program. As
the template is a xml file it can be viewed using any xml-viewer.

For our addressbook example as given in section 2.1 we need to create a template,
called addressbook t.xml2. A screenshot of the template, using Mozilla Firefox, is shown

1The template itself is also a xml-file of which the rootelement is defined as template.
2The actual file containing all the addresses is called addressbook.xml. For convinience and for later

refenrence we just add t to the actual filename. This then indicates that it is the template for

addressbook.xml. The template file could however have any other name.

2

4. Summary

Figure 1: xmlreader template: addressbook t.xml

in Fig. 1. Some options can be set using the options specification. For the example we
would like the parser to test for unknown tags. This is done using strict=”yes”. Because
some Fortran compilers do not support a feature of Fortran 95 that is used by default,
a dynamic lenght for local character variables in a subroutine, we turn this feature off
using dynamicstrings=”no”. Instead of dynamic strings we allow for each string a length
of 40. Further, we set the rootname of the addressbook by rootname=”addressbook”.

The xmlreader program has an inputfile, xmlreader.inp. This file contain the filename
of the template. Only the filename, without the extension, is necessary. The xmlreader
program will read this template and generate a reading module having a name of the
form xml data addressbook t in addressbook t.f90. This file must be included in the
final project.

3.1. Reading addresbook entries

The reading subroutine generated using the template in Fig. 1 can now be used to read
the addressbook in section 2.1. For reading the addressbook entries in addressbook.xml
the main program is given in App. C.

4. Summary

In this Getting started the minimum to get the Fortran xml parser running was ex-
plained. An easy to understand addressbook example was used to show the use of the
xml reader program for automatically generating a module for treating the data.

3

A. Project files

A. Project files

The project files for each of the projects explained are given in Table 1.

Project Parser xmlreader Addressbook

1 readfile.f90 xmlread.f90 tst addressbook.f90

2 xmlparse.f90 xmlparse.90 addressbook t.f90

3 xmlreader.inp xmlparse.f90

4 read xml prims.f90

5 read from buffer.inc

6 read xml scalar.inc

7 ream xml array.inc

Table 1: Project files

B. Testprogram sourcecode - readfile.f90

program readfile

use xmlparse

character(len=20) :: fname

logical :: mustread

type(XML_PARSE) :: info

character(len=80) :: tag

logical :: endtag

character(len=80),dimension(1:2,1:20) :: attribs

integer :: no_attribs

character(len=200),dimension(1:100) :: data

integer :: no_data

integer :: i

! Assign the xml-filename to fname and open the file

mustread = .true.

fname = ’adressbook.xml’

call xml_open(info,fname,mustread)

! Check for errors

if (xml_error(info)) then

! handle the errors

else

! Start reading the file

call xml_options(info,ignore_whitespace = .true.)

do

call xml_get(info,tag,endtag,attribs,no_attribs,data,no_data)

if (xml_error(info)) then

! handle the errors

4

C. Main program - tst addressbook.f90

endif

write(*,*) tag,endtag

do i=1,no_attribs

write(*,*) i,’>’,attribs(1,i),’<=’,trim(attribs(2,i))

enddo

write(*,*) (i,’>’,trim(data(i)),’<’,i=1,no_data)

if (.not. xml_ok(info)) exit

enddo

endif

call xml_close(info)

stop

end program

C. Main program - tst addressbook.f90

! Test program for generated code

program addressbook

use xml_data_addressbook

integer :: n,i

call read_xml_file_addressbook(’addressbook.xml’)

n = size(Entry)

do i=1,n

write(*,’(A40)’) Entry(i)%Surname

write(*,’(A40)’) Entry(i)%Name

write(*,’(A40)’) Entry(i)%Street

write(*,’(I10.10)’) Entry(i)%Code

write(*,’(A40)’) Entry(i)%City

write(*,’(I10.10)’) Entry(i)%Tel

write(*,’(A40/)’) Entry(i)%email

enddo

end program

References

[1] Markus, A.: Have a look at XML files, ACM SIGPLAN Fortran Forum, Volume 23
Nr. 3, pp. 2-10, December 2004

[2] Markus, A. : Have a second look at XML files, ACM SIGPLAN Fortran Forum,
Volume 24 Nr.1, pp. 2-5, April 2005

[3] xmlparse.html: Online documentation, Generating a reading subroutine

5

