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Point defect modeling in materials: Coupling ab initio and elasticity approaches
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Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This
elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size
of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred
atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the
properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are
demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron,
and the neutral vacancy in silicon.
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I. INTRODUCTION

Point defects in crystalline solids play a crucial role in
controlling material properties and their kinetic evolution.
This is true for both intrinsic defects such as vacancies,
self-interstitials, and their small clusters, and extrinsic defects
such as impurities and dopants. As a consequence, a proper
understanding and modeling of material properties often
require a precise knowledge of point defect characteristics, in
particular their formation and migration energies. To this end,
ab initio calculations based on density functional theory (DFT)
have become a valuable tool. They are now able to predict
point defect energetics from which one can build quantitative
models of material macroscopic behaviors. Such modeling
approaches have been successful in answering a large variety of
experimental questions, such as diffusion processes,1,2 phase
transformations,3 and recovery of irradiated metals,4,5 for
instance. They have also allowed one to predict unsuspected
structures of defect clusters, at sizes where experimental
evidence is difficult to obtain.6–8

Ab initio calculations of point defects are currently per-
formed with the supercell approach, where periodic boundary
conditions are applied. The structure and energy of the point
defect are obtained after relaxation of the atomic positions,
possibly under various constraints. As ab initio methods are
technically limited to a few hundred atoms, the question
of the interaction of the defect with its periodic images
merits some consideration. If long-range interactions are
involved, the convergence of the results with the supercell
size—and consequently the ability to obtain the properties of
isolated defects—can be out of reach. This problem is well
known for charged defects, where the long-range Coulomb
interaction is involved. Corrective approaches9–12 are now
commonly applied to improve the convergence of these
charged-defect calculations. But even neutral defects lead
to long-range interactions because of their elastic field. In
the case of linear defects such as dislocations, some specific
modeling techniques have been developed to circumvent this
problem and obtain dislocation intrinsic properties.13–15 But
this problem seems to have been overlooked for point defects.

A point defect in a bulk material induces a long-range elastic
field: the magnitude of the associated displacements decays
like 1/R2, with R the distance to the defect. No characteristic
length can be associated with such a decrease, and the

properties obtained by ab initio calculations are therefore
those of a periodic arrangement of interacting defects. The
commonly applied technique to minimize this artifact is simply
to increase the supercell size, but the sizes necessary to
obtain reasonably converged values are sometimes too large
to be handled by ab initio calculations. This is the case for
defects leading to strong elastic fields, like interstitials or small
defect clusters, or for materials where a complex treatment of
electronic interactions is required (e.g., hybrid functionals,
GW methods, etc.).

In this paper, we propose to couple elasticity theory and
ab initio calculations to study point defects. We use elasticity
theory to model the interaction of the point defect with its
periodic images so as to withdraw this interaction from the ab
initio calculations and thus obtain the properties of the isolated
defect. The benefit of this approach is demonstrated for three
different systems: the self-interstitial in zirconium, clusters
of self-interstitials in iron, and the vacancy in silicon. These
systems differ not only in the nature and the size of the point
defect but also in the character of the chemical bonding, either
metallic or covalent, and the structure of the crystal, either
hexagonal closed packed (hcp), body-centered cubic (bcc), or
diamond. In all cases, our coupling approach improves the
convergence with respect to the supercell size, thus allowing
a more accurate description of point defects than could be
achieved with a simple ab initio calculation.

II. MODELING APPROACH

Let us consider a supercell with fixed periodicity vectors
A1, A2, and A3 containing one point defect. After relaxation
of the atomic positions, the energy of the supercell as supplied
by the ab initio calculation, ED

ε=0, is given by

ED
ε=0 = ED

∞ + 1
2E

p
int, (1)

where ED
∞ is the energy of the isolated defect and E

p
int is

the interaction energy of the defect with its periodic images.
The factor 1/2 arises because one-half of this interaction is
devoted to the defect itself, and the other goes to its periodic
images. We use continuous linear elasticity theory to evaluate
E

p
int. Within this theory, a point defect can be modeled by

an equilibrated distribution of forces,16,17 i.e., a distribution
with neither net force nor torque. If we only retain the first
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moment of this distribution, the defect is fully characterized
by its elastic dipole Pij . The interaction energy E

p
int of Eq. (1)

is then evaluated by considering the interaction energy of the
point defect with the strain ε

p
ij created by its periodic images:18

E
p
int = −Pij ε

p
ij , (2)

with ε
p
ij = −

∑

n,m,p

′
Gik,j l(Rnmp) Pkl. (3)

Here Rnmp = nA1 + mA2 + pA3, with n, m, and p ∈ Z,
corresponds to the position of the defect periodic images, and
the term n = m = p = 0 has been excluded from the sum in
Eq. (3) (no self-interaction term, as indicated by the prime).
Gik,j l(x) is the second derivative of the anisotropic elastic
Green’s function with respect to the Cartesian coordinates
xj and xl . Once the elastic constants Cijkl of the perfect
crystal have been determined, Gik,j l(x) is calculated with the
numerical scheme proposed by Barnett.19 Owing to the 1/R3

decrease of Gik,j l(R), the lattice summation required in Eq. (3)
is conditionally convergent. To regularize the summation, we
use the procedure introduced by Cai et al.,20 which is based on
the fact that the displacement and strain fields are necessarily
periodic with the same periodicity as the supercell. Therefore,
once the dipole tensor Pij is identified, the interaction energy
E

p
int of the point defect with its periodic images can be

numerically evaluated thanks to Eqs. (2) and (3).
As previously shown in Ref. 21, the elastic dipole Pij can be

directly extracted from the atomistic calculations. It is linked
to the homogeneous stress σij of a periodic simulation cell of
volume V containing one point defect through the equation

Pij = V (Cijklεkl − σij ), (4)

where εij is the homogeneous strain applied on the super-
cell. In particular, the elastic dipole is proportional to the
homogeneous stress in the case of atomistic calculations with
fixed periodicity vectors (ε = 0). Compared to other methods
where the elastic dipole is obtained either from a fitting
of the displacement fields22 or from the calculation of the
Kanzaki forces,23–25 Eq. (4) presents the advantage of being
straightforward and simple to use.

To summarize our approach, once point defects energies
have been calculated with ab initio methods, they are corrected
by subtracting 1

2E
p
int, the spurious interaction energy arising

from periodic boundary conditions, to obtain the properties of
isolated defects [Eq. (1)]. After correction, these properties are
expected to be weakly sensitive to the supercell size and shape.
The evaluation of the interaction energy does not involve
any fitting procedure but is a fast post-treatment, which only
requires the knowledge of the elastic constants of the perfect
crystal and the residual stress of the supercell containing the
defect.

III. SELF-INTERSTITIAL IN HCP ZIRCONIUM

A. Formation energy

We apply this modeling approach to study the self-
interstitial atom (SIA) in hcp zirconium. This point defect
appears under irradiation and its fast diffusion in the basal
planes of the hcp lattice is often assumed to explain the
self-organization of the microstructure observed in irradiated

FIG. 1. (Color online) Structures of the stable SIA configurations
in hcp Zr: octahedral (O), basal octahedral (BO), split dumbbell (S),
basal split dumbbell (BS), crowdion (C), and buckled basal crowdion
(BC’). PS and PS’ are obtained by a rotation of angle φ = 30◦ and
50◦ of S in the prismatic plane.29

zirconium,26,27 as well as the breakaway growth visible for
high irradiation doses.26,28 Recent ab initio calculations27,29

have made clear that SIAs in zirconium can adopt different
configurations nearly degenerated in energy. These configura-
tions are sketched in Fig. 1. Because of the strong elastic field
created by the point defect, the associated formation energies
vary with the supercell size, making it hard to get a clear view
of the SIA energy landscape.27,29

We calculate the formation energy of the different SIA con-
figurations in the generalized gradient approximation (GGA)
with the functional proposed by Perdew, Burke, and Ernzerhof
(PBE30) and with an ultrasoft pseudopotential, using the PWSCF

code31 of the QUANTUM ESPRESSO package.32 Figure 2 shows
the variation with the supercell size of the formation energies
for the four most stable configurations: three high-symmetry
configurations—the octahedral (O), basal octahedral (BO),
and basal split dumbbell (BS)—and one configuration with
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FIG. 2. (Color online) Formation energies Ef of the four most
stable SIAs in Zr versus supercell size. Solid symbols refer to ab
initio uncorrected results and open symbols to the results corrected
by the elastic model. The periodicity vectors of the supercell have
been kept either fixed (squares) or relaxed (triangles) in the ab initio
calculations.
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FIG. 3. (Color online) (a) Uncorrected and (b) corrected Zr SIA
formation energies Ef of the stable configurations versus the number
of atoms for ε = 0 calculations.

a lower symmetry that was identified in Ref. 29—the buckled
basal crowdion (BC’). Like previous calculations,27,29 our
DFT results, obtained at constant supercell volume and shape
(ε = 0), show that the formation energies strongly depend on
the size and shape of the supercell. In view of these variations,
calculations with at least 361 atoms are necessary to get
converged values. In addition to this quantitative aspect, the
SIA properties are not correctly described, even qualitatively,
if the supercell is too small. Indeed, inversions of stability
are observed when the supercell size increases [Fig. 3(a)]. For
instance, the O configuration is more stable than the BS config-
uration below 201 atoms, whereas the opposite is true above.

Including now the elastic correction, we obtain an improved
convergence of the formation energies for all configurations
(Fig. 2, ε = 0 corr.). The deviation to the converged values,
between 120 and 300 meV for uncorrected DFT calculations
at 97 atoms, is reduced to the range between 40 and 150 meV
when applying the elastic model. With this correction, the
relative stability of the different defect configurations is well
described for a supercell containing no more than 201 atoms
[Fig. 3(b)].

Considering now the full energy landscape of the SIA in hcp
Zr, four other stable configurations are found: a split dumbbell
(S) along the c axis, a crowdion (C), and two dumbbells (PS
and PS’) resulting from a rigid rotation of S in the prismatic
plane.29 These configurations have a higher energy than the
previous ones. The elastic correction also helps to improve
their convergence with an energy landscape still correctly
described for 201 atoms.

Our approach, coupling ab initio calculations and elasticity
theory, therefore allows a better picture of SIA energetics for
reduced supercell sizes. A drift with size in the formation en-
ergies nevertheless remains. It probably arises from disturbed
atomic forces, as these forces are also modified by the presence
of the periodic images. As pointed out by Puska et al.,33 this can
disturb the relaxation process and thus the defect configuration,
leading to a variation in the formation energies.

B. Zero-stress calculations

Instead of using fixed periodicity vectors in atomistic
calculations (ε = 0), one can also minimize the energy with
respect to these vectors so as to obtain zero stress (σ = 0) at the
end of the relaxation. Such conditions are sometimes believed
to give a better convergence than the ε = 0 conditions. As
shown by Fig. 2, this is the case for the different configurations

of the SIA in Zr, but a variation of the formation energy with
the supercell size still remains. Surprisingly, these uncorrected
σ = 0 calculations lead to the same energy variations as the
corrected ε = 0 calculations. Before discussing this point, it is
worth seeing how the elastic modeling needs to be adapted in
order to add a correction also to these σ = 0 calculations and
maybe improve their convergence.

In this σ = 0 case, a homogeneous strain has been applied
to the simulation box. Equation (1) therefore needs to be com-
plemented with the energy contribution of this deformation:

�Eε = V

2
Cijklεij εkl − Pij εij . (5)

We can still use Eq. (4) to link the elastic dipole Pij with the
homogeneous applied strain and the resulting stress. In the
σ = 0 case, the elastic dipole is proportional to the applied
strain. We obtain that the energy of the supercell containing
one point defect is given by

ED
σ=0 = ED

∞ + 1

2
E

p
int − 1

2V
SijklPijPkl, (6)

where the elastic compliances of the bulk material Sijkl are the
inverse tensor of the elastic constants Cijkl . Equation (6) is now
used in combination with Eqs. (2) and (4) to extract the energy
of the isolated defect, ED

∞, from these σ = 0 simulations.
The corrected formation energies for ε = 0 and σ = 0

simulations are superimposed (Fig. 2). This shows the validity
of our elastic modeling because the corrected formation
energies do not depend on the simulation conditions for a
given supercell size. As noticed before, the uncorrected σ = 0
corrections merge these corrected energies. This means that the
correction applied to the σ = 0 is null: the spurious interaction
energy 1

2E
p
int is compensated by the energy contribution of the

homogeneous strain applied to cancel the residual stress [last
term in Eq. (6)]. As we see later this compensation between
different energy contributions is specific to SIAs in zirconium.

As a consequence, σ = 0 calculations appear unnecessary.
For the same result, one can instead perform ε = 0 calcula-
tions, where the periodicity vectors are kept fixed, and then
apply the elastic correction. We highlight the importance of
this point, since σ = 0 calculations necessitate an increased
number of self-consistent field steps. Geometric optimizations
at σ = 0 are usually a badly preconditioned problem, so we
propose to avoid them systematically. Moreover, calculations
of energy barriers are routinely done with ε = 0 conditions,
whereas σ = 0 conditions seem much more complicated. As
we see below, our correction scheme can also be applied to
these barrier calculations, and then the σ = 0 calculations are
made useless.

C. Migration energy

Our approach, coupling elasticity and ab initio calculations,
is not restricted to the modeling of stable configurations. It
can also be beneficial to study migration pathways between
these configurations. To illustrate this point, we consider the
migration between different configurations of the SIA in Zr.
The minimum energy pathways are investigated using the
nudged elastic band (NEB) method,34 and the results are
presented in Fig. 4 for simulation cells containing 97 and 201
atoms.
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FIG. 4. (Color online) Migration pathways of Zr SIA calculated
with the NEB method, between the BO and BC’ configurations and
between the BS, BO, and O configurations: (a, c) uncorrected and
(b, d) corrected results.

We first focus on the migration between the two most
stable configurations of the SIA in Zr, namely BO and BC’.
Without the elastic correction [Fig. 4(a)], there is a saddle point
between these two configurations with a supercell containing
97 atoms. This saddle point almost disappears with a 201-atom
supercell, showing that the transition from BC’ to BO is
athermal. Consequently, BC’ cannot be considered a stable
configuration: it corresponds to an extended flat portion of
the energy surface with an unstable behavior leading to the
basin of the BO configuration. When the elastic correction is
included [Fig. 4(b)], the result with 97 atoms already shows a
reduced energy barrier, thus illustrating the acceleration of the
convergence with this correction.

We then examine two migration pathways important for the
diffusion: the BO-BS transition inside the basal plane and the
BO-O transition along the c axis. Without the elastic correction
[Fig. 4(c)] there is no significant difference between these two
migration barriers, even for 201-atom NEB calculations. On
the other hand, the corrected barriers [Fig. 4(d)] lead to an
easier migration in the basal plane, with a difference of about
0.07 eV in the migration energies. This could induce a diffusion
anisotropy of the SIA at a macroscopic scale. This of course
needs to be confirmed by the calculations of all migration
barriers and then the modeling of the diffusion coefficient.

As for the BO-BC’ transition, the elastic correction im-
proves the convergence of the BO-O barrier. But the situation is
less clear for the migration from BO to BS. In this last case, the
uncorrected DFT calculation indeed provides superimposed
barriers between 97 and 201 atoms, whereas the level of
the BS energy changes on the corrected curves. This can
be understood by looking at the formation energies of the
BO and BS configurations in Fig. 2. Without correction, the
convergence rate is the same. There is thus a compensation
of errors when the energy difference between these two
configurations, and also the migration energy between them,
are considered. As a consequence the barriers calculated

for 97 and 201 atoms appear superimposed. Such an error
compensation does not occur for the corrected barrier, because
the convergence rate is not the same for the energies of the BO
and BS configurations, once corrected (Fig. 2).

IV. SELF-INTERSTITIAL-ATOM CLUSTERS
IN BODY-CENTERED-CUBIC IRON

We now look how our modeling approach performs in a
case where the point defect creates a stronger elastic field
than the one of a SIA. To do so, we consider SIA clusters
in bcc iron. SIAs created during irradiation in iron can
migrate either to annihilate at sinks or to form clusters. These
clusters adopt different morphologies. Large enough clusters
have a two-dimensional shape corresponding to dislocation
loops with a 1/2 〈111〉 Burgers vector.35 But a broader
range of morphologies4,6,7 is available to clusters containing
a few SIAs. In particular, it has been shown recently that
some clusters can have a three-dimensional structure with an
underlying crystal symmetry corresponding to the C15 Laves
phase.7 These C15 clusters are predicted to be very stable at
small sizes and highly immobile, in contrast with the 〈111〉
loop clusters which can easily glide along the 〈111〉 direction,
leading to a fast one-dimensional diffusion.35 Knowing the
relative stability of the different configurations that can adopt
a SIA cluster in iron is of prime importance to be able to
model the kinetic evolution. The stability of the C15 clusters
is closely related to the magnetic properties of iron,7,36 which
are out of reach of empirical potentials. Therefore, ab initio
calculations are needed. This severely limits the size of the
SIA cluster that can be simulated and makes our modeling
approach potentially attractive to push back this limit.

To illustrate this point, we consider a cluster containing
eight SIAs with two different configurations, a C15 aggregate
and a planar configuration corresponding to an aggregate of
parallel dumbbells with a 〈111〉 orientation. The formation
energies of both configurations were first calculated with the
M07 empirical potential7 for different sizes of the simulation
cell (Fig. 5). With fixed periodicity vectors of the simulation
cell (ε = 0), one needs at least 2000 atoms for the C15
aggregate and 4000 atoms for the 〈111〉 planar configuration
to get a formation energy converged to a precision better
than 0.1 eV. The convergence is slightly faster for zero-
stress calculations (σ = 0) in the case of the C15 aggregate
[Fig. 5(a)], but the opposite is true in the case of the 〈111〉
planar configuration [Fig. 5(b)]. When we add the elastic
correction, the convergence is improved for both cluster
configurations. The corrected ε = 0 and σ = 0 calculations
lead then to the same formation energies, except for the
smallest simulation cell (128 lattice sites) in the case of the
〈111〉 cluster. This deviation for the smallest supercell is not
surprising, since the 〈111〉 cluster almost touches its periodic
images in the simulation cell containing 128 lattice sites. In this
case, the interaction between the cluster and its periodic images
cannot be reduced only to an elastic interaction. The problem
is not present for C15 clusters, which are more compact. It is
worth pointing that, contrary to the SIA in zirconium, corrected
energies are different and converge faster than uncorrected
energies calculated with the σ = 0 condition.
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FIG. 5. (Color online) Formation energy of a SIA cluster con-
taining eight interstitials in bcc iron calculated for fixed periodicity
vectors (ε = 0) or at zero stress (σ = 0) for different sizes of
the simulation cell: (a) C15 aggregate and (b) parallel-dumbbell
configuration with a 〈111〉 orientation. Atomistic simulations are
performed either with the M07 empirical potential7 (EAM) or with
ab initio calculations (GGA). Solid symbols refer to uncorrected
results and open symbols to the results corrected by the elastic model.

These formation energies have been also obtained with
ab initio calculations using GGA PBE, a 2 × 2 × 2 k-point
grid, and an ultrasoft pseudopotential37 for a simulation cell
containing 250 lattice sites (Fig. 5). Calculations with fixed
periodicity vectors (ε = 0) lead to an energy difference �E =
−5.6 eV between the C15 and the 〈111〉 planar configuration,
whereas this energy difference is only �E = −0.6 eV in zero-
stress calculations (σ = 0). In all cases, the C15 configuration
is the most stable but the energy difference varies a lot.
Once the elastic correction is added, this energy difference is
�E = −3.3 eV with the ε = 0 condition and �E = −3.7 eV
with the σ = 0 condition. Although the size of the simulation
cell may appear small compared to the size of the defect, good
precision is obtained with this approach coupling ab initio
calculations and elasticity theory. We can conclude that the
C15 configuration is the most stable one with an energy lower
by 3.5 ± 0.2 eV than the 〈111〉 planar configuration.

V. VACANCY IN SILICON

We finally illustrate the usefulness of our approach by
considering another system, the vacancy in diamond silicon.
This point-defect experiences a strong Jahn-Teller distortion38

(see inset in Fig. 6), leading to a long-range elastic field which
disturbs the convergence of ab initio calculations. To correctly
describe the properties of defects in semiconductors, one needs
to quantitatively predict the size of the band gap. Simple DFT
approximations, like the local density approximation (LDA)
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FIG. 6. (Color online) Vacancy formation energy Ef in silicon
calculated with the LDA and HSE06 functionals, either for fixed
periodicity vectors (ε = 0) or at zero stress (σ = 0). Solid symbols
refer to the ab initio uncorrected results and open symbols to the
results corrected by the elastic model. The vacancy configuration is
displayed in the inset: the white sphere corresponds to the empty
lattice site and the purple spheres represent its first nearest neighbors.

or the GGA, do not correctly address this problem. We have to
turn to methods with a higher accuracy, like the random phase
approximation or hybrid functionals.39 The slow convergence
of the vacancy formation energy with respect to the size
of the supercell and the k-point sampling40,41 then becomes
problematic, because the above-mentioned ab initio methods
have very poor scalability with the system size.

Calculations of the vacancy formation energy within the
LDA provide a validation of the elastic correction for this
defect (Fig. 6): 216-atom supercells are sufficient to get
converged values. One can mention that the Jahn-Teller
configuration is unstable for smaller systems with LDA. Once
corrected, both ε = 0 and σ = 0 calculations lead to the
same energies and converge faster than uncorrected results.
The little remaining drift in the corrected formation energy
certainly arises from the fact that the tetragonality ratio around
the vacancy slightly varies with the supercell size. As a
consequence, we also obtain a small variation of the elastic
dipole. The relaxation process is therefore slightly affected
by the presence of the periodic defect images, leading to the
remaining energy variation.

DFT calculations with the hybrid Heyd-Scuseria-Ernzerhof
(HSE06) functional42,43 stabilize and favor the Jahn-Teller
configuration, in agreement with experiments,38 but calcula-
tions beyond 216-atom supercells are computationally pro-
hibitive. Note that a fine 2 × 2 × 2 k-point grid was necessary
to ensure the appropriate convergence. The HSE06 calculation,
once corrected, predicts a converged value of 4.26 eV, which
is consistent with previously published values.44

VI. CONCLUSION AND PERSPECTIVES

In conclusion, we showed in this paper that the coupling of
ab initio calculations with an elastic modeling accelerates the
convergence of point defect energetics. The reliability of our
approach has been demonstrated on three very different point
defects: a self-interstitial in an hcp metal, a cluster of eight
self-interstitials in a bcc metal, and a vacancy in a diamond
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semiconductor. The corrected results merge the σ = 0 ab
initio calculations for the interstitial in zirconium but converge
faster for both the interstitial clusters in iron and the vacancy
in silicon. This makes useless such σ = 0 calculations. The
elastic correction also applies to energy barriers, calculated
with the NEB method, for instance.

The proposed approach is general and can be directly used
for any ab initio study of point defects:45 once the elastic
constants of the perfect crystal are known, the associated
post-processing uses one single piece of information that is
calculated anyway in any ab initio code, namely the stress
tensor in the defective supercell. This will make possible the
ab initio study of defects for which a quantitative description
would be out of reach otherwise. This includes point defects
creating a strong distortion of the host lattice, large interstitials
or small clusters, for instance, as well as elements with many
electrons, like actinides. It becomes also conceivable to use
ab initio methods that give a more accurate description of the
electronic structure (all electron methods, hybrid functionals,
etc.) without a loss of precision induced by the small size of
the supercell.

Our elastic correction scheme can also be applied to
charged defects, where it will sum up with the standard
electrostatic correction.9–12 However, the residual stress used
as an input parameter must first be corrected from any spurious
electrostatic contribution, as discussed in Ref. 46.

Finally, it is worth pointing out that our approach could
be extended to correct forces on atoms from disturbances
due to periodic boundary conditions. To do so, one needs
to consider the derivative, with respect to atomic positions, of
the interaction energy appearing in the total energy [Eq. (1)].
With such an elastic correction on the forces, it would be
possible then to obtain a better structural relaxation and to
further improve the energy convergence.
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