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NUCLEATION is the onset of a first-order
phase transition by which a metastable phase
transforms into a more stable one. Such a phase
transition occurs when a system initially in
equilibrium is destabilized by the change of an
external parameter such as temperature or pres-
sure. If the perturbation is small enough, the
system does not become unstable but rather
stays metastable. In diffusive transformations,
the system then evolves through nucleation,
the growth and coarsening of a second phase.
Such a phase transformation is found in many
situations in materials science, such as conden-
sation of liquid droplets from a supersaturated
vapor, solidification, precipitation from a super-
saturated solid solution, and so on. The initial
stage of all these different processes can be well
described within the same framework, currently
known as the classical nucleation theory.
Since its initial formulation in 1927 by Vol-

mer, Weber, and Farkas (Ref 1, 2) and its modifi-
cation in 1935 by Becker and Döring (Ref 3),
the classical nucleation theory has been a suit-
able tool to model the nucleation stage in phase
transformations. The success of this theory relies
on its simplicity and on the few parameters
required to predict the nucleation rate, that is,
the number of clusters of the new phase appear-
ing per unit of time and volume. It allows ratio-
nalizing experimental measurements, predicting
the consequences of a change of the control
parameters such as temperature or supersatura-
tion, and describing the nucleation stage in
mesoscopic modeling of phase transformations.
This article first describes the results

obtained by Volmer, Weber, Farkas, Becker,
and Döring (Ref 1–3), which constitute the
classical nucleation theory. These results are
the predictions of the precipitate size distribu-
tion, steady-state nucleation rate, and incuba-
tion time. This theory describes the nucleating
system as a homogeneous phase where hetero-
phase fluctuations occur. Some of these fluctua-
tions reach a large enough size that they can
continue to grow and lead to the formation of
precipitates. The nucleating system is thus envi-
sioned mainly from a thermodynamic view-
point. The key controlling parameters are the
nucleation driving force and the interface free
energy. A kinetic approach, cluster dynamics,

can also be used to describe nucleation. This
constitutes the second part of this article. Here,
a master equation describes the time evolution
of the system, which is modeled as a cluster
gas. The key parameters are the cluster conden-
sation and evaporation rates. Both approaches
are different in their description of the nucleat-
ing system and their needed input parameters.
They are nevertheless closely related. Predic-
tions of the classical nucleation theory have
actually been derived from the same master
equation used by cluster dynamics (Ref 3),
and extensions of classical nucleation theory
always start from this master equation. In this
article, the links as well as the difference
between both descriptions are emphasized.
Since its initial formulation, the classical nucle-
ation theory has been enriched, mainly by Binder
and Stauffer (Ref 4–6), to take into account the
fact that clusters other than monomers can
migrate and react. It has also been extended to
multicomponent systems (Ref 7–12). These
generalizations of the initial formalism are
presented at the end of the second part.

Thermodynamic
Approach

Conditions for Nucleation

Nucleation occurs when a homogeneous
phase initially in stable thermal equilibrium is
put in a state where it becomes metastable by
the variation of a controlling parameter. In the
following case, the controlling parameter is
the temperature, and the initial system is
quenched through a first-order phase transition
in a two-phase region. The system then tends
to evolve toward a more stable state and to
reach its equilibrium. Because the parent phase
is not unstable, this transformation cannot pro-
ceed through the continuous development of
growing infinitesimal perturbations delocalized
in the whole phase, that is, by spinodal decom-
position (Ref 13, 14). Such perturbations in a
metastable state increase the free energy. As a
consequence, they can appear because of

thermal fluctuations, but they naturally decay.
To reach its equilibrium, the system must over-
come an energy barrier to directly form clusters
of the new equilibrium phase, a process known
as nucleation.
This difference between a metastable and an

unstable state, as well as between nucleation
and spinodal decomposition, is better under-
stood through the following example. Consider
a system corresponding to a binary mixture of
two elements, A and B, with a fixed atomic
fraction x of B elements. Such a system can
be a solid or a liquid solution, for instance.
Assume that the free energy per atom, G(x),
of this system is known for every composition
x and is given by the function plotted in
Fig. 1. A two-phase region given by the com-
mon tangent construction exists at the consid-
ered temperature; the equilibrium state of
binary mixtures with an intermediate composi-
tion x0 between xe and ye corresponds to a mix-
ture of two phases having the compositions xe

and ye. A homogeneous system with a composi-
tion x0 will then separate into these two equilib-
rium phases. The variation of the free energy
can be examined if this transformation happens
through the development of infinitesimal fluc-
tuations. In that purpose, consider a small per-
turbation corresponding to a separation of the
initially homogeneous system into two phases
having the compositions x0 + dx1 and x0 + dx2.
For the perturbation to be small, assume
dx1j j � 1 and dx2j j � 1. If f1 is the fraction
of phase 1, matter conservation imposes the
following relation between both compositions:

f1dx1 þ 1� f1ð Þdx2 ¼ 0 (Eq 1)

The free energy variation associated with this
unmixing is given by:

�G ¼ f1G x0 þ dx1
� �þ 1� f1ð ÞG x0 þ dx2

� �
�G x0

� �
¼ 1/2 f1dx

2
1 þ 1� f1ð Þdx22

� �
G00 x0ð Þ þ o dx21

� �
(Eq 2)

The first derivative G0(x0) of the free energy
does not appear in Eq 2 because of the relation
in Eq 1. The sign of the free-energy variation is
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thus governed by the second derivative G00(x0)
of the free energy. If this second derivative is
negative, the initial infinitesimal perturbation
decreases the free energy (Fig. 2a). It can there-
fore develop until the system reaches its two-
phase equilibrium state. This is the regime of
spinodal decomposition. In Fig. 1, the free-
energy second derivative changes its signs in
xs and ys; all homogeneous systems with a com-
position between these limits are unstable and
evolve spontaneously to equilibrium. On the
other hand, if the composition x0 is higher than
the equilibrium composition xe but smaller than
the spinodal limit xs, the homogeneous binary

mixture is metastable. Because the second
derivative of the free energy is positive, any
infinitesimal perturbation increases the free
energy (Fig. 2b) and will therefore decay. To
reach its equilibrium state, the system must
overcome an energy barrier, and phase separa-
tion occurs by nucleation of the new equilib-
rium phase with the composition ye.

The Capillary Approximation

In the nucleation regime, the system evolves
through the formation of well-defined and loca-
lized fluctuations corresponding to clusters of

the new equilibrium phase. The formation free
energies of these clusters are well described by
the capillary approximation. This assumes that
two contributions enter this free energy (Fig. 3):

� Volume contribution: By forming a cluster
of the new phase, the system decreases its
free energy. The gain is directly proportional
to the volume of the cluster or, equivalently,
to the number, n, of atoms forming the clus-
ter. This is the nucleation driving force.

� Surface contribution: One needs to create an
interface between the parent phase and the
cluster of the new phase. This interface has
a cost that is proportional to the surface area
of the cluster or, equivalently, to n(d�1)/d,
where d is the dimension of the system.

The following is restricted to the three-
dimensional case. The formation free energy of
a cluster containing n atoms is then given by:

�Gn ¼ n�Gnuc þ n2=3As (Eq 3)

where DGnuc is the nucleation free energy, s is
the interface free energy, and A is a geometric
factor. If the interface free energy is isotropic,
the equilibrium shape of the cluster is a sphere.
The corresponding geometric factor is then A =
(36pO1

2)1/3, where O1 is the volume of a mono-
mer. For anisotropic interface free energy, one
can use the Wulff construction (Ref 15, 16) to
determine the equilibrium shape, that is, the
shape with minimum free energy for a given
volume, and deduce an average interface free
energy corresponding to a hypothetical spheri-
cal cluster having the same volume and the
same interface energy as the real one, which
may be facetted. An example is given in
Ref 17 for precipitates with {100}, {110}, and
{111} interfaces.
The nucleation free energy is obtained by

considering the difference of chemical poten-
tials in the parent and in the equilibrium phases
for all atoms composing the cluster:

Fig. 1 Sketch of the free energy of a binary mixture quenched in a two-phase region. The bold line is the free energy
per atom G(x) of the homogeneous system. The compositions xe and ye of the equilibrium phases are given by

the common tangent construction. The spinodal limits xs and ys define the unstable region. DG nuc (x0) is the nucleation
free energy of the metastable homogeneous system of composition x0.

Fig. 2 Variation DG of the free energy corresponding to the spontaneous unmixing of a homogeneous system of composition x0 in two phases of respective compositions x0 + dx1
and x0 + dx2. (a) Spinodal regime (G 00(x0) < 0). (b) Nucleation regime (G 00(x0) > 0)
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�Gnuc ¼
X

i
yei ðmei � m0i Þ (Eq 4)

where yei is the atomic fraction of the type i
atom in the nucleating equilibrium phase, and
mei and m0i are the corresponding chemical
potentials in the nucleating equilibrium phase

and the parent phase, respectively. When the
parent phase is metastable, chemical potentials
in this phase are higher than the ones at equilib-
rium. The nucleation free energy given by Eq 4
is therefore negative. Classic expressions of the
nucleation free energy are given at the end of

this section in some simple cases. For negative
nucleation driving force, because of the compe-
tition between the volume and the interface
contributions, the cluster formation free energy
(Eq 3) shows a maximum for a given critical
size, n*, as illustrated in Fig. 3. n* corresponds
to the size at which the first derivative of DGn is
equal to zero, thus leading to:

n� ¼ �2/3 As
�Gnuc

� �3
(Eq 5)

and the corresponding formation free energy:

�G� ¼ �Gn� ¼ 4/27 Asð Þ3
�Gnucð Þ2 (Eq 6)

Below this critical size, the energy of growing
clusters increases because of the interface pre-
dominance at small sizes. Clusters in this size
range are therefore unstable; if a cluster
is formed, it will tend to redissolve. Nevertheless,
unstable clusters can be found in the parent phase
because of thermal fluctuations. The size distribu-
tion of these clusters is given by:

Ceq
n ¼ C0 exp ��Gn

kT

� �
(Eq 7)

whereC0 is the atomic fraction of sites accessible
to the clusters. For precipitation in the solid state,
for instance, all lattice sites can receive a cluster,
and therefore C0 = 1. The validity of the size dis-
tribution (Eq 7) can be demonstrated for an
undersaturated system (DGnuc � 0) using a lat-
tice gas model (compare with “Cluster Gas Ther-
modynamics” in the “Kinetic Approach” section
of this article). For a supersaturated system, one
assumes that the system reaches a steady state
where clusters smaller than the critical size still
obey the distribution (Eq 7).
Comparisons with atomic simulations have

shown that Eq 7 correctly describes the size dis-
tribution of subcritical clusters. An example
of such a comparison is given in Fig. 4 for
aluminum-zirconium alloys, leading to the
coherent precipitation of L12 Al3Zr compounds
(Ref 17); size distributions are given for under-
saturated, saturated, and supersaturated solid
solutions. A similar comparison leading to the
same conclusion can be found in Ref 18 for
an unmixing alloy on a body-centered cubic lat-
tice, or in Ref 19 and 20 for the magnetization
reversal of an Ising model in two and three
dimensions, respectively.
The kinetic approach developed further in

this article shows that the steady-state distribu-
tion in a nucleating system slightly deviates
from the equilibrium distribution (Eq 7) around
the critical size. An exact expression of the
steady-state distribution has been obtained by
Kashiev (Ref 21, 22). In the critical size inter-
val, Dn, which is precisely defined as follows,
it can be approximated by:

Cst
n ¼ 1/2 � Z n� n�ð Þ½ �Ceq

n (Eq 8)

The Zeldovich factor, Z, appearing in this
equation is a function of the second derivative

Fig. 3 Variation of the cluster formation free energy DGn with the number, n, of atoms they contain as described by
Eq 3. n* is the critical size and DG* the corresponding free energy. The size interval Dn characterizes the

energy profile around the critical size and is directly linked to the Zeldovich factor (Eq 10).

Fig. 4 Dependence on the nominal concentration x0Zr of the cluster size distribution of an aluminum solid solution at
500 �C. At this temperature, the solubility limit is xeZr ¼ 0:0548 %. Symbols correspond to atomic simulations

(kinetic Monte Carlo) (Ref 18) and lines to predictions of the classical nucleation theory. Full lines correspond to the
equilibrium cluster size distribution (Eq 7) for n 	 n* and dotted lines to the steady-state distributions (Eqs 8 and 85).
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of the cluster formation free energy at the
critical size:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2pkT
@2�Gn

@n2

				
n¼n�

s
¼ 3 �Gnucð Þ2

4
ffiffiffiffiffiffiffiffiffi
pkT

p
Asð Þ3=2

(Eq 9)

The physical meaning of the Zeldovich factor
can be seen in Fig. 3, which sketches the varia-
tion of the cluster formation free energy with
their size. If the formation free energy was har-
monic, the size interval where the difference
between the cluster free energy and the nucle-
ation barrier, DG*, is smaller than the thermal
energy, kT, would be given by:

�n ¼ 2ffiffiffi
p

p 1

Z
(Eq 10)

The Zeldovich factor therefore characterizes the
flatness of the energy profile around the critical
size. Equation 8 shows that steady-state cluster
concentrations in the critical region are reduced
compared to the equilibrium distribution. For
the critical size, a factor 1/2 appears in front of
the equilibrium concentration.

Steady-State Nucleation Rate

When the nucleation barrier, DG*, is high
enough compared to the thermal energy, kT, the
metastable state of the system contains thermal
fluctuations well described by the distribution
(Eq 7). Sometimes, one of these fluctuations will
reach and overcome the critical size. It can then
continue to grow and become more and more sta-
ble. Classical nucleation theory assumes that the
system reaches a steady state, and it then shows
that stable nuclei appear at a rate given by (Ref 3):

J st ¼ b�ZC0 exp ��G�

kT

� �
(Eq 11)

where b* is the rate at which a critical cluster
grows, and Z is the Zeldovich factor (Eq 9).
This factor has been introduced by Becker and
Döring (Ref 3) to describe cluster fluctuations
around the critical size and, in particular, the
probability for a stable nucleus to redissolve.
ZC0 exp(�DG*/kT) is therefore the number of
critical clusters that reach a size large enough
that they can continuously grow. The initial
expression of the nucleation rate derived by
Volmer and Weber (Ref 1) and by Farkas
(Ref 2) did not consider this Zeldovich factor
and led to an overestimation of the nucleation
rate. A small Zeldovich factor corresponds to
a flat energy profile around the critical size.
Critical clusters experience size variations that
are mainly random and not really driven by
their decrease in energy. Some of them will
redissolve and not fall in the stable region. This
explains why the nucleation rate is reduced by
the Zeldovich factor. A more rigorous deriva-
tion of the nucleation rate where the Zeldovich
factor naturally appears is given in the section

“The Link with Classical Nucleation Theory”
in this article.
An expression for the growing rate b* of the

critical cluster is needed. If the growth-limiting
process is the reaction at the interface to attach
the atoms on the critical cluster (ballistic
regime), b* is then proportional to the cluster
area. Assuming that this reaction is controlled
by one type of atom, the following expression
is obtained (Ref 23):

b� ¼ 4pr�
2 li�i

�

x0i
yei

(Eq 12)

where r* is the radius of the critical cluster, li
is the distance corresponding to the atom last
jump to become attached to the critical cluster,
Gi is the corresponding reaction frequency, and
O is the volume corresponding to one atomic
site. x0

i and yei are the respective atomic fraction
of the jumping atoms in the metastable parent
phase and the stable nucleating phase.
For solid - solid phase transformations, the

critical cluster growth is usually controlled by the
long-range diffusion of solute atoms. The critical
condensation rate is then obtained by solving the
classical diffusion problem associated with a
growing spherical particle. If diffusion of only
one type of atom limits the growth, and all other
atomic species diffuse sufficiently fast enough so
that the cluster composition instantaneously
adjusts itself, one obtains (Ref 23):

b� ¼ 4pr�
Di

�

x0i
yei

(Eq 13)

where Di is the diffusion coefficient of type i
atoms. In a multicomponent alloy, when

diffusion coefficients of different atomic spe-
cies have close values and when the composi-
tion of the critical cluster can vary, one must
use the linked flux analysis presented in the sec-
tion “Cluster Dynamics” in this article. In all
cases, the growth rate is proportional to the
cluster radius in this diffusive regime.
Both events, that is, the long-range diffusion

and the reaction at the interface, can be simulta-
neously taken into account. The corresponding
expression of the condensation rate has been
derived by Waite (Ref 24).

Transient Nucleation

A transient regime exists before the nucle-
ation rate reaches its stationary value (Eq 11).
One conventionally defines an incubation time,
or a time lag, to characterize this transient
regime. This is defined as the intercept with
the time axis of the tangent to the curve repre-
senting the variations of the nuclei density
(Fig. 5). Exact expressions of the incubation
time have been obtained as a series of the initial
and steady-state cluster size distributions (Ref
26, 27). Different approximations have then
been made to evaluate this series and obtain
closed forms of the incubation time. They all
lead to an incubation time:

tinc n�ð Þ ¼ y0
1

pZ2b�
¼ y0

16kT Asð Þ3
9 �Gnucð Þ4b� (Eq 14)

where the factor y0 depends on the chosen
approximation and is close to 1 (Ref 28). Some
authors obtained a factor y0 that depends
slightly on the temperature and the shape of the

Fig. 5 Precipitate density as a function of aging time for an aluminum solid solution containing 0.18 at.% Sc aged at
300 �C. The time evolution obtained from cluster dynamics simulations (Ref 25) allows the definition of a

steady-state nucleation rate, J st, and an incubation time, tinc.
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cluster formation free energy around the critical
size (Ref 26, 29). One can stress, however, that
a precise value of this factor is seldom, if ever,
needed. As is shown later, the incubation time
depends on too many parameters to be known
precisely experimentally. Equation 14 allows
describing its main variation when the tempera-
ture or the nucleation driving force are changed;
this is usually enough to model incubation and
nucleation.
This expression (Eq 14) of the incubation

time can be obtained from simple physical con-
siderations (Ref 23, 30). The steady state will
be reached once the clusters have grown suffi-
ciently far away from the critical size. Super-
critical clusters have a negligible probability
to decay when their size becomes greater than
n� þ 1/2�n. Dn characterizes the width of the
critical region (Fig. 3) and is related to the
Zeldovich factor via Eq 10. Because the energy
profile is flat in this neighborhood, clusters
make a random walk in the size space, with a
constant jump frequency b*. Accordingly, the
corresponding time needed to diffuse from n*
to n� þ 1/2�n is:

tinc n�ð Þ 
 �n2

4b�
(Eq 15)

This leads to the expression (Eq 14) with a fac-
tor y0 = 1.
Different approximations of the nucleation

rate in this transient regime can also be found in
the literature. Kelton et al. (Ref 28) have com-
pared these approximations with exact results
obtained, thanks to a numerical integration of
the kinetic equations describing nucleation. They
concluded that the best-suited approximation to
describe the transient nucleation rate is the one
obtained by Kashchiev (Ref 21, 22):

J tð Þ ¼ J st 1þ 2C
X1
m¼1

�1ð Þmexp �m2t

t

� �" #

(Eq 16)

where C = 1 for a system initially prepared in a
state far from its nucleating metastable state.
The time constant is given by:

t ¼ 4

p3
1

Z2b�
(Eq 17)

When t > t, one can retain only the first term in
the sum appearing in Eq 16. Usually, it is even
enough to assume that the nucleation rate behaves
like the Heaviside step function; that is, that the
nucleation rate reaches its stationary value after
an incubation time where no nucleation occurs.
The incubation time corresponding to Eq 16 is
p2t/6. Therefore, in the Kashchiev treatment, the
factor in Eq 14 is y0 ¼ 2/3 .
It is worth saying that the incubation time

and the associated transient regime depend on
the conditions in which the system has been
prepared. Equations 14 and 16 implicitly assume
that the quench was done from infinite temper-
ature; no cluster around the critical one existed

at the initial time. This may not be true. For
instance, the system could have been prepared
in an equilibrium state corresponding to a
slightly higher temperature where it was stable
and then quenched in a metastable state. A clus-
ter distribution corresponding to this higher
temperature already exists before the beginning
of the phase transformation. If the temperature
difference of the quench is small, these preex-
isting clusters will reduce the incubation period.
The dependence of the incubation time on the
initial conditions has been observed, for
instance, in atomic simulations for an unmixing
binary alloy (Ref 18). Starting from a random
solid solution corresponding to an infinite
temperature preparation, an incubation time is
observed before nucleation reaches its steady
state. If the alloy is annealed above its solubility
limit before a quench, the incubation stage dis-
appears if the temperature difference of the
quench is not too high. Kashchiev considered
the effect of this initial cluster distribution on
nucleation in the case of a change in pressure
(Ref 22, 31). His results can be easily
generalized (Ref 28). To do so, the supersatura-
tion variation is introduced:

�s ¼ �Gnuc t ¼ 0�ð Þ
kT t ¼ 0�ð Þ ��Gnuc t ¼ 0þð Þ

kT t ¼ 0þð Þ (Eq 18)

where t = 0� means that thermodynamic quan-
tities are calculated for the initial state in which
the system has been prepared, and t = 0+ for the
state where nucleation occurs. In his derivation,
Kashchiev assumed that the interface free
energy of the clusters is the same in both stable
and metastable states. The constant entering
in the expression (Eq 16) of the transient nucle-
ation rate is then:

C ¼ 1��s

Z
exp �n��sð Þ (Eq 19)

and the corresponding incubation time is multi-
plied by this constant C. The supersaturation
variation, Ds, is positive; otherwise, nucleation
would have happened in the initial state
in which the system has been prepared. The
existence of an initial cluster size distribution
therefore always reduces the incubation time.
Nevertheless, C rapidly tends to 1 when the
thermodynamic states t = 0� and t = 0+ become
too different.
By definition, the nucleation rate does not

depend on the cluster size in the stationary
regime. This property is used to advantage in
Eq 11 to calculate the steady-state nucleation
rate, Jst, at the critical size. However, the time
needed for the stationary regime to develop will,
of course, vary with the cluster size. This means
that the incubation time depends on the cluster
size at which it is measured. The previously
defined incubation time corresponds to the criti-
cal size. However, the smallest cluster size that
one can detect experimentally may be signifi-
cantly larger than the critical size. Therefore, it
is necessary to describe the variation with the

cluster size of the incubation time. This problem
has been solved by Wu (Ref 26) and Shneidman
and Weinberg (Ref 29), who showed that the
incubation time measured at size n is:

tinc nð Þ ¼ tinc n�ð Þ þ 1

2pZ2b�
y1 þ ln

ffiffiffi
p

p
Zðn� n�Þ� �
 �

(Eq 20)

for n > n* + Dn, that is, a cluster size outside
the critical region. The constant y1 is 1 in the
expression obtained by Wu and y1 = g/4 + ln
(2)/2 for Shneidman and Weinberg, where g 

0.5772 is Euler’s constant.
All the aforementioned expressions are

obtained in the parabolic approximation, that is,
assuming that the cluster formation free energy
is well described by its harmonic expansion
around the critical size. According to Shneidman
and Weinberg (Ref 29), this approximation is
highly accurate when calculating the steady-state
nucleation rate, but its validity is limited for the
incubation time. When considering the exact
shape of the cluster formation free energy
(Eq 3), the expression of the incubation time then
depends on the model used for the absorption
rate. In all cases, the incubation time at the
critical size can be written:

tinc n�ð Þ ¼ 1

2pZ2b�
�

2
þ ln

ffiffiffi
p

p
Zn�� �� y3

h i
(Eq 21)

where the constant y3 differs from 0 when the
parabolic approximation is not used. In the bal-
listic regime, when the condensation rate is pro-
portional to the cluster surface, such as in
Eq 12, the authors obtained y3 = 1 � ln(3).
The incubation time measured at size n is then:

tinc nð Þ ¼ 1

2pZ2b�
n

n�
� 1=3

þ ln
n

n�
� 1=3

�1

� ��

þ � � 2þ ln
6�G�

kT

� ��
; 8n > n� þ 1/2�n

(Eq 22)

In the diffusive regime, when the condensation
rate is proportional to the cluster radius, such
as in Eq 13, y3 = 3/2 � ln(3) and:

tinc nð Þ ¼ 1

2pZ2b�
1/2 n

n�
� �1=3þ2
h i2

þ ln n
n�
� �1=3�1
h i�

þ ��7/2 þ ln 6�G�
kT

� �o
; 8n > n� þ 1/2�n:

(Eq 23)

It should be stressed that all these expres-
sions for incubation time have been obtained
in the continuous limit valid for large clusters.
The expressions should be used only when the
nucleation barrier DG* is high enough for the
critical size not being too small.

Heterogeneous Nucleation

Until now, only homogeneous nucleation has
been considered; it was assumed that nuclei can
form anywhere in the system. However, it may
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require less energy for the nuclei to form hetero-
geneously on preferred nucleation sites. These
sites can be at the interface with existing impuri-
ties or some lattice defects such as grain bound-
aries or dislocations. The classical theory also
allows modeling heterogeneous nucleation after
some slight modifications. The first modification
is that the parameter C0 appearing in the cluster
size distribution (Eq 7) is now the number of
sites where heterogeneous precipitation can take
place. One also needs to take into account the
decrease of the nuclei free energy when they
are located at a preferred nucleation site. Such
a decrease usually arises from a gain in the inter-
face free energy; it is more favorable for the
nuclei to form on an already existing interface,
because the cost to create the interface between
the old and the new phases is reduced.
First consider the case where the cluster wets

the substrate and has a cap shape (Fig. 6a).
Electrodeposition is one example where this
happens (Ref 32). Three different interface free
energies must be considered:

� s between the parent and the nucleating
phase

� ss between the parent phase and the
substrate

� si between the nucleating phase and the
substrate

The wetting angle is then defined by the Young
equilibrium equation (Ref 16):

cos yw ¼ ss � si

s
(Eq 24)

The wetting leads to a cap shape only if the
interface free energies obey the inequalities
�s 	 ss � si 	 s. If the difference ss � si

is smaller than �s, then yw = p, and the wet-
ting is not possible because an unwet cluster
costs less energy. On the other hand, if the
difference is greater than s, the wetting is com-
plete, and one can no longer define a cap shape
because the nucleating phase will uniformly
cover the interface.
The cluster free energy takes the same expres-

sion as the one given by the capillary approxi-
mation in the homogeneous case (Eq 3). To
calculate the geometric factor A appearing in
this expression, the radius, R, of the cap must
be defined. The cluster volume is then given
by (Ref 22):

n�1 ¼ 1/3pR3 2þ cos ywð Þ 1� cos ywð Þ2

¼ pR3 2sþ ss � sið Þ s� ss þ sið Þ2
3s3

(Eq 25)

and the free energy associated with the whole
cluster interface by:

n2=3As ¼ pR2 s2 1� cos ywð Þ þ si � ssð Þ sin2 yw
� �

¼ pR2 s� ss þ sið Þ

� 2s2 þ si � ssð Þ sþ ss � sið Þ
s2

(Eq 26)

Eliminating the variable R between Eq 25 and
26, one obtains the expression of the geometric
factor appearing in the capillary approximation:

A ¼ 9p�2
1

� �1=3 2s2 � ss � sið Þ sþ ss � sið Þ
s 2sþ ss � sið Þ2=3 s� ss þ sið Þ1=3

(Eq 27)

When ss � si = s, the unwetting is com-
plete; one recovers the geometric factor
A ¼ 36p�2

1

� �1=3
corresponding to a spherical

cluster. With this expression of the geometric
factor and the correct value of the parameter
C0, all expressions obtained for homogeneous
nucleation can also be used for heterogeneous
nucleation.
Nuclei can also have a lens shape (Fig. 6b).

In such a case, the two wetting angles are
defined by (Ref 22):

cos yw ¼ s2
s þ s2 � s2

i

� �
=2sss

cos ys ¼ s2
s þ s2 � s2

i

� �
=2sssi

(Eq 28)

The geometric factor corresponding to this
lens shape is obtained using the same method
as previously; one expresses the volume and
the interface energy of the two caps composing
the cluster and then eliminates the cap radii
between these two equations.

Examples

It is worth having a closer look at some
examples—solidification and precipitation in
the solid state—and giving an approximated
expression of the nucleation free energy in
these simple cases.

Example 1: Solidification. A single compo-
nent liquid that was initially at equilibrium is
quenched at a temperature, T, below its melting
temperature, Tm. Because the liquid and the
solid have the same composition, the nucleation
free energy is simply the free-energy difference
between the liquid and the solid states at the
temperature T. If the undercooling is small,
one can ignore the difference in the specific
heats of the liquid and the solid. The nucleation
free energy is then proportional to the latent
heat of fusion per atom, L (Ref 16):

�Gnuc ¼ L
T � Tm

Tm

(Eq 29)

When the undercooling is large, Eq 29may be not
precise enough. One can then consider the next
term in the Taylor expansion (Ref 22), leading to:

�Gnuc ¼ L
T � Tm

Tm

��Cp
T � Tmð Þ2
2Tm

(Eq 30)

where �Cp ¼ Cliq
p Tmð Þ � Csol

p Tmð Þ is the dif-
ference in the heat capacities of the liquid and
solid phases.
Equation 29 shows how the steady-state

nucleation rate varies with the quenching tem-
perature. Assuming that the interface free
energy is constant and that the condensation
rate, b*, simply obeys an Arrhenius law, one
obtains the nucleation rate given by:

J st ¼ l
T � Tmð Þ2ffiffiffiffi

T
p exp � A

T
þ B

T T � Tmð Þ2
 !" #

(Eq 31)

where l, A, and B are positive constants. The
nucleation rate corresponding to this equation is
sketched in Fig. 7. The main variations are given
by the exponential. As a consequence, there is a
temperature window in which the nucleation rate
is substantial. For high temperatures close to the
melting temperature, Tm, the nucleation free
energy is small and leads to a negligible nucle-
ation rate. At low temperatures, the nucleation
rate is also negligible because of the Arrhenian
behavior of the kinetic factor and the critical
cluster concentration (Eq 7). The nucleation rate
can be measured only at intermediate

q q

q

s

s

s

s

s

s

Fig. 6 Possible shapes of a nucleus in heterogeneous nucleation. (a) Cap shape. (b) Lens shape

Fig. 7 Variation with quenching temperature of
steady-state nucleation rate in the case of

solidification (Eq 31). Tm, melting temperature
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temperatures. Such conclusions on the nucle-
ation rate are not specific to solidification but
are encountered in any nucleation experiment.
Example 2: Precipitation in the Solid

State. In this example, it is necessary to take
into account elastic effects. The free energy is
thus divided between a chemical and an elastic
contribution.
Chemical Contribution. For the binary mix-

ture, whose free energy per atom G(x) is
sketched in Fig. 1, the homogeneous metastable
phase of composition x0 has a nucleation free
energy given by:

�Gnuc x0
� � ¼ 1� yeð Þ mA yeð Þ � mA x0

� �� �
þ ye mB yeð Þ � mB x0

� �� �
(Eq 32)

A and B atom chemical potentials are respec-
tively defined as the first derivatives of the total
free energy with respect to the number NA and
NB of A and B atoms. This leads to the follow-
ing expressions:

mA xð Þ ¼ G xð Þ � xG0 xð Þ
mB xð Þ ¼ G xð Þ þ ð1� xÞG0 xð Þ (Eq 33)

which check the property (NA + NB)G(x) =
NAmA + NBmB.
Incorporating these expressions in Eq 32:

�Gnuc x0
� � ¼ G yeð Þ �G x0

� �� ye � x0
� �

G0 x0
� �
(Eq 34)

This shows that the nucleation free energy
corresponds to the difference, calculated in the

point of abscissa ye, between the free energy
and the tangent in x0, as illustrated in Fig. 1.
It should be stressed, however, that this con-

struction does not correspond to the maximal
nucleation driving force. If the stoichiometry
of the precipitates is allowed to vary, the maxi-
mal nucleation driving force is obtained for a
cluster composition y0 corresponding to the
point where the tangent to the free energy is
parallel to the tangent in point of abscissa x0

(Fig. 8). Such a deviation of the nucleating
phase from its equilibrium may be important
to consider. An example is the precipitation of
carbonitride precipitates in steels (Ref 33).
The following considers that the free energy
well defining the nucleating phase is deep
enough that the compositions ye and y0 can be
assumed identical. This question of the precipi-
tate composition is revisited in “Nonstoichio-
metric Clusters” of the “Kinetic Approach”
section of this article, where a general frame-
work to treat variations of the precipitate com-
position is presented.
To go further, one must consider a precise

function for the free energy. The regular solid
solution is a convenient energetic model that
is representative of a binary alloy. In this
model, the free energy per atom is:

G xð Þ ¼ kT x ln xð Þ þ 1� xð Þ ln 1� xð Þ½ � þ x 1� xð Þo
(Eq 35)

where o is the interaction parameter. When this
parameter is positive, the alloy tends to unmix
at low temperature, and the corresponding phase
diagram possesses a two-phase region. For

temperatures lower than o/2k, the free energy
indeed has two minima, and its variation with
the composition is similar to the one sketched
in Fig. 1. The nucleation free energy of a solid
solution quenched in a metastable state, as given
by this thermodynamic model, is:

�Gnuc x0
� � ¼ 1� yeð ÞkT ln

1� xe

1� x0

� �

þ yekT ln
xe

x0

� �
þ o x0 � xe

� �
(Eq 36)

A useful approximation of this expression is the
dilute limit corresponding to a small solubility
limit, xe � 1, and a small nominal concentra-
tion, x0 � 1. In that case, one can keep only
the major contribution in the nucleation free
energy, leading to:

�Gnuc x0
� � ¼ yekT ln

xe

x0

� �
(Eq 37)

This generally gives a good approximation of the
nucleation free energy at low temperature for
not-too-high supersaturations. It then allows pre-
dicting the main consequences of a variation of
the solid-solution nominal composition on the
nucleation. This approximation of the nucleation
free energy in the dilute limit can be easily
generalized to a multicomponent alloy.
Other thermodynamic approaches can be

used to obtain expressions of the nucleation
free energy. It is possible, for instance, to
describe interactions between atoms with an
Ising model. Chemical potentials entering in
Eq 4 can then be calculated with the help of
current thermodynamic approximations, such
as mean-field approximations and low- or
high-temperature expansions (Ref 34). Using
the simple Bragg-Williams mean-field approxi-
mation, one indeed recovers the expression
(Eq 36) corresponding to the regular solid-solu-
tion model. An example of this approach, start-
ing from an atomic model, is given in Ref 17
and 35 for a face-centered cubic solid solution
leading to the nucleation of a stoichiometric
compound with the L12 structure, such as
aluminum-zirconium or aluminum-scandium
alloys. On the other hand, it is possible to use
an experimental thermodynamic database, such
as the ones based on the Calphad approach (Ref
36, 37), to calculate the nucleation free energy.
Elastic Contribution. Usually, the precipitat-

ing phase has a different structure or molar vol-
ume from the parent phase. If the interface
between both phases remains coherent, an elastic
contribution must be taken into account in the
formation free energy of the clusters (Eq 3). Sim-
ilar to the “chemical” nucleation free energy, this
elastic contribution varies linearly with the vol-
ume, V, of the cluster. Its sign is always positive
because there is an extra energy cost to maintain
coherency at the interface. One can illustrate this
elastic contribution by considering the case of a
precipitating phase having a slightly different
equilibrium volume from the parent phase, as

Fig. 8 Parallel tangent construction leading to the maximal nucleation driving force for precipitates having the
composition y0
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well as different elastic constants. For the sake of
simplicity, the assumption is that both phases
have an isotropic elastic behavior characterized
by their Lamé coefficients, l and m for the parent
phase, and l0 and m0 for the precipitating phase.
If a and a(1 + d) are the respective lattice para-
meters of the two phases, the elastic energy nec-
essary to embed a spherical cluster of volume V
in an infinite elastic medium corresponding to
the parent phase is:

�Gel ¼ V
6mð3l0 þ 2m0Þ
3l0 þ 2m0 þ 4m

�2 (Eq 38)

The model of the elastic inclusion and inhomo-
geneity developed by Eshelby (Ref 38–40) allows
calculating the elastic energy inmore complicated
situations, when the inhomogeneity elastic behav-
ior is anisotropic or when the inclusion stress-free
strain is different from a simple pure dilatation.
One can also deduce from this model the cluster
shape minimizing its elastic self-energy. Never-
theless, thismodel is tractableonlywhen the inclu-
sion is an ellipsoid. When the elastic contribution
becomes important compared to the interface one,
the shape of the critical cluster strongly deviates
from an ellipsoid. One can then use a diffuse inter-
face phase-field model to determine the critical
nucleus morphology and determine the associated
nucleation activation energy (Ref 41, 42). How-
ever, in all cases, the extra energy cost arising
from elasticity is positive and proportional to the
inclusion volume. It thus reduces the absolute
value of the nucleation driving force.
This inclusion model allows deriving the clus-

ter self-elastic energy. However, the interaction
of the cluster with the surrounding microstructure
is ignored. In particular, one does not consider the
elastic interaction between different clusters.
Such an interaction is long range and cannot
always be neglected. It may lead to self-organized
morphological patterns due to preferred nucle-
ation sites around already existing clusters. In
the case where the strain induced by the micro-
structure varies slowly compared to the size of
the nucleating cluster, it has been shown that the
interaction elastic energy depends linearly on the
cluster volume and is independent of its shape
(Ref 43). This interaction energy, whose sign is
not fixed, depends on the position of the cluster.
It can be considered in the cluster formation free
energy (Eq 3) to model strain-enhanced nucle-
ation. Such amodel is able to predict, for instance,
variation of the nucleation driving force near an
existing precipitate between the elastically soft
and hard directions. A natural way to develop
such a model is to use a phase-field approach
(see the Appendix to this article).

Kinetic Approach

Predictions of the classical nucleation theory,
that is, the steady-state nucleation rate and the
incubation time, are approximated solutions of

kinetic equations describing the time evolution
of the system. Instead of using results of the
classical nucleation theory, one can integrate
these kinetic equations numerically. This
kinetic approach is known as cluster dynamics.
It rests on the description of the system under-
going phase separation as a gas of clusters that
grows and decays by absorbing and emitting
other clusters. In this section, the cluster gas
thermodynamic formalism used by cluster
dynamics is described first. Kinetic equations
simulating the phase transformation are then
presented. Finally, the link with classical nucle-
ation theory is shown. It is generally assumed
that the stoichiometry of the nucleating phase
cannot vary. This is thus equivalent to consider-
ing the nucleation of clusters with a fixed com-
position that is known a priori. The end of this
section shows how this strong assumption can
be removed when one is interested in the nucle-
ation of a multicomponent phase with a varying
composition.

Cluster Gas Thermodynamics

The system is described as a gas of noninter-
acting clusters having a fixed stoichiometry
corresponding to that of the precipitating phase
at equilibrium with the parent phase. Clusters
are groups of atoms that are linked by a neighbor-
hood relation. If onewants tomodel precipitation
in an unmixing alloy, for instance, one can con-
sider that all solute atoms that are closer than a
cutoff distance belong to the same cluster. No
distinction is made between clusters belonging
to the old or to the new phase. In this modeling
approach, clusters are defined by a single param-
eter: their size or the number, n, of atoms they
contain. The term Gn is the free energy of a clus-
ter containing n atoms embedded in the solvent.
Gn is a free energy and not simply an energy
because of the configurational entropy; for a
given cluster size, there can be different config-
urations having different energies. Thus, the
associated partition function must be considered.
IfDi

n is the number of configurations having the
energyHi

n for a cluster of size n, the cluster free
energy is then defined as:

Gn ¼ �kT ln
X
i

Di
n exp �Hi

n=kT
� �" #

(Eq 39)

It is formally possible to divide this free energy
into a volume and an interface contribution
such as in the capillary approximation, except
that the interface free energy, sn, may now
depend on the cluster size. This free energy cor-
responds to an interface between the stoichio-
metric cluster and the pure solvent. Thus, in
three dimensions:

Gn ¼ nge þ n2=3ð36p�2Þ1=3sn (Eq 40)

where ge is the free energy per atom of the bulk
equilibrium precipitating phase, that is, without
any interface. This is, by definition, the sum of

the chemical potentials, mei , for each constituent
of the cluster modulated by its atomic fraction, yei :

ge ¼
X
i

yeim
e
i (Eq 41)

The interface free energy, sn, entering in
Eq 40 is an average isotropic parameter, and
clusters, on average, are therefore assumed to
be spherical. One important difference with
the capillary approximation is that this interface
free energy now depends on the size n of the
cluster. It is possible to compute the cluster free
energy, Gn, starting from an energetic model
describing interactions between atoms. For
small clusters, one can directly enumerate the
different configurations, i, accessible to a clus-
ter of size n, and then directly build the free
energy (Eq 39) (Ref 17, 32, 44). Because the
degeneracy Di

n grows very rapidly with the size
of the cluster, this approach is limited to small
clusters. For larger clusters, one can sample
thermodynamic averages with Monte Carlo
simulations to compute the free-energy differ-
ence between a cluster of size n and one of size
n + 1 at a given temperature (Ref 44, 45). These
simulations have shown that, in three dimen-
sions, the size dependence of the interface free
energy is well described for large enough clus-
ters by a generalized capillary approximation:

sn ¼ s 1þ cn�1=3 þ dn�2=3 þ en�2=3 lnðnÞ
� 

(Eq 42)

where the temperature-dependent coefficients c,
d and e correspond to the line, the point, and the
undulation contributions to the interface free
energy (Ref 45). They take into account the
interface curvature. The asymptotic limit of
Eq 42 corresponds to the constant interface free
energy of the classic capillary approximation,
which also depends on temperature.
Some other expressions have been proposed

in the literature for the size dependence of the
interface free energy. Gibbs (Ref 46) indeed
obtained a differential equation of this size
dependence. Integrating this expression, Tolman
(Ref 47) obtained the following expression:

sn ¼ s 1þ n0

n

� 1=3� ��2

(Eq 43)

where n0 is a parameter. One can see, however,
that Eq 42 and 43 are equivalent up to the order
o(n�1/3) when n tends to infinity.
Consider an assembly composed of noninter-

acting clusters and model thermodynamics in
the cluster gas approximation of Frenkel (Ref
48). If Nn is the number of clusters containing n
atoms, the free energy of the system is given by:

G ¼ G0 þ
X1
n¼1

NnGn � kT ln Wð Þ (Eq 44)

where G0 is the free energy in the absence of
clusters, andW is the number of different config-
urations accessible to the cluster assembly.
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Assuming that each cluster, whatever its size, lies
only on one site, and neglecting around each clus-
ter all excluded sites that cannot be occupied by
any other cluster, this number is simply given by:

W ¼ N0!

N0 �
P1
n¼1

Nn

� �
!
Q1
n¼1

Nn!

(Eq 45)

where N0 is the number of sites accessible to
the cluster. Application of the Stirling formula
leads to the following estimation for the free
energy:

G ¼ G0 þ
X1
n¼1

NnGn þ kT
X1
n¼1

Nn ln Nnð Þ

þ kT N0 �
X1
n¼1

Nn

 !
ln N0 �

X1
n¼1

Nn

 !

�N0 ln N0ð Þ
(Eq 46)

The equilibrium cluster size distribution can be
deduced from this free energy. This distribution
is obtained by minimizing Eq 46 under the con-
straint that the total number of atoms included
in the clusters is fixed. Therefore, a Lagrange
multiplier, m, is introduced, and the grand
canonical free energy is defined:

G� m
X1
n¼1

nNn (Eq 47)

The minimization of this grand canonical free
energy with respect to the variables Nn leads
to the equilibrium cluster size distribution that
should check the equation:

Neq
n

N0 �
P1
n¼1

Neq
n

¼ exp �Gn � nm
kT

� �
(Eq 48)

The assumption of noninteracting clusters used
to derive this equation is only valid in the dilute
limit. It is therefore reasonable to neglect in Eq
48 the sum appearing in the rightside denomi-
nator compared to the number of accessible
sites N0. At equilibrium, the atomic fraction of
clusters containing n atoms is then:

Ceq
n ¼ Neq

n

Ns

¼ C0 exp �Gn � nm
kT

� �
(Eq 49)

where C0 = N0/Ns, and Ns is the total number of
sites. For homogeneous nucleation, all sites can
act as nucleation centers: N0 = Ns and C0 = 1.
Sometimes, Eq 49 iswritten in its equivalent form:

Ceq
n ¼ C0

Ceq
1

C0

� �n
exp �Gn � nG1

kT

� �
(Eq 50)

The quantities Gn � nm and Gn � nG1 should
nevertheless not be confused; the first one is
the cluster formation free energy in a cluster
gas characterized by the parameter m, whereas
the last one is the energy difference between
the cluster and the equivalent number of mono-
mers. The following uses Eq 49 because it

allows a direct link with the capillary approxi-
mation used by the classical nucleation theory.
It is interesting tounderstand thephysicalmean-

ing of the Lagrange multiplier m appearing in Eq
49.Atequilibrium, thegrandcanonical free energy
(Eq 47) is at a minimum. Then, for all sizes n:

m ¼ 1

n

@G

@Nn
(Eq 51)

To calculate this derivative, the total number of
atoms of type i is introduced:

Mi ¼ yei
X1
n¼1

nNn (Eq 52)

Equation 51 is equivalent to:

m ¼ 1

n

X
i

@G

@Mi

@Mi

@Nn

¼
X
i

m0i y
e
i

(Eq 53)

which uses the definition of the chemical
potential—first derivative of the total free
energy with respect to the number of atoms.
Therefore, the Lagrange multiplier is nothing
else than the chemical potentials of the differ-
ent atomic species modulated by their atomic
fraction. The fact that only one Lagrange mul-
tiplier is needed, and not one for each constit-
uent, is a consequence of the initial
assumption that the clusters have a fixed
composition corresponding to the equilibrium
one, yei . Using the expression (Eq 40) of the
cluster free energy and the definition (Eq 41)
of the volume contribution, the equilibrium
cluster size distribution given by the capillary
approximation is recovered:

Ceq
n ¼ C0 exp ��Gn

kT

� �
(Eq 54)

with:

�Gn ¼ n�Gnuc þ n2=3 36p�2
1

� �1=3
sn (Eq 55)

The nucleation free energy has the same
expression as the one used in classical nucle-
ation theory (Eq 4), but now the interface free
energy depends on the cluster size.
It should be stressed that the cluster gas

approximation is a thermodynamic model by
itself; thermodynamic quantities such as chem-
ical potentials are results and not input para-
meters of the model (Ref 49). This has
important consequences for the kinetic approach
of nucleation developed in the next section; in
contrast with classical nucleation theory, one
does not need to calculate the nucleation
driving force to input it in the modeling.
One can use this cluster gas thermodynamic

model to calculate the composition of the parent
phase at the coexistence point between the parent
and the nucleating phase, that is, the solubility
limit. This coexistence point is defined by the

equality of the chemical potentials m0i and mei .
The nucleation free energy is thus null, and only
the interface contributes to the cluster formation
free energy (Eq 55). At the coexistence point, the
composition of the parent phase is then:

xei ¼ yei
X1
n¼1

n exp �n2=3 36p�1ð Þ2sn

kT

 !
(Eq 56)

The interface free energy fixes the solubility
limit in the parent phase. This interface free
energy is actually the key parameter of the
nucleation kinetic approach. Even if its depen-
dence on the cluster size is small, it is generally
important to take it into account, because all
thermodynamic quantities derive from it, and
it enters in exponential terms such as in Eq 56.

Cluster Dynamics

For the sake of simplicity, in the following sub-
sections homogeneous nucleation is considered.
All monomers can be assumed equivalent; one
does not need to distinguish between monomers
lying on nucleation sites and free monomers.
Master Equation. Kinetics is described

thanks to a master equation that gives the time
evolution of the cluster size distribution. In
many cases, one can assume that only monomers
migrate. Therefore, this assumption is consid-
ered first and later the case where all clusters
are mobile. When only monomers can migrate,
the probability of observing a cluster containing
n atoms obeys the differential equations:

@Cn

@t
¼ Jn�1!n � Jn!nþ1 8n � 2

@C1

@t
¼ �2J1!2 �

X
n�2

Jn!nþ1

(Eq 57)

where Jn!n+1 is the cluster flux from the class
of size n to the class n + 1. This flux can be
written:

Jn!nþ1 ¼ bnCn � anþ1Cnþ1 (Eq 58)

where bn is the probability per unit time for one
monomer to impinge on a cluster of size n, and
an is the probability for one monomer to leave a
cluster of size n.
Condensation Rate. Expression of the con-

densation rate bn can be obtained from physical
considerations. This condensation rate must be
proportional to the monomer concentration
and can generally be written:

bn ¼ bnC1 (Eq 59)

where bn is an intrinsic property of the cluster
of size n. In the ballistic regime, this factor is
proportional to the surface of the cluster and
to the jump frequency, G1, of the monomer to
impinge on the cluster. In the diffusion regime,
this factor is proportional to the cluster radius
and to the monomer diffusion coefficient, D1.
A general expression of the condensation rate,
covering the ballistic and the diffusion regime,
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has been proposed by Waite (Ref 24), who
obtained:

bn ¼ 4p
R2

n

Rn þ k
D1

�1

C1 (Eq 60)

where O1 is the monomer volume, and Rn is the
cluster capture radius. It can be assumed that
this radius is close to the one corresponding to
the more compact cluster shape, that is, a
sphere, leading to:

Rn ¼ 3n�1

4p

� �1=3

(Eq 61)

The distance, k, is given by the relation:

k ¼ D1

l1�1

(Eq 62)

where l1 is the distance corresponding to the
monomer last jump to become attached to the
cluster. If Rn � k, one recovers the expression
of the condensation rate in the ballistic regime,
and in the diffusive regime if Rn � k.
Equation 60 therefore shows that condensation
on small clusters is generally controlled by
ballistic reactions, and condensation on big
clusters by diffusion.
The expressions used by classical nucleation

theory for the condensation rate (Eq 12 and
13) are similar to the ballistic and diffusion lim-
its of Eq 62. Nevertheless, a difference appears
because the condensation rate of the classical
nucleation theory is proportional to the solute
concentration and not to the monomer concen-
tration, as in Eq 62. It thus makes use of the
total solute diffusion coefficient or jump fre-
quency and not of the monomer diffusion coef-
ficient or jump frequency. For a dilute system,
one can consider that all the solute is contained
in monomers. The condensation rates used by
both approaches are then equivalent. However,
the difference may be important for more con-
centrated systems. This point has been thor-
oughly discussed by Martin (Ref 49), who
showed the equivalence in the dilute limit.
Evaporation Rate. By contrast with the con-

densation rate, the evaporation rate, an cannot
generally be obtained directly. It has to be
deduced from bn using the equilibrium cluster
size distribution (Eq 49). The evaporation rate
is obtained assuming that it is an intrinsic prop-
erty of the cluster and does not depend on the
embedding system. Therefore, it is assumed
that the cluster has enough time to explore all
its configurations between the arrival and the
departure of a monomer. This assumption is
coherent with the fact that the clusters are only
described through their sizes. Thus, an should
not depend on the saturation of the embedding
system. It could be obtained, in particular, by
considering any undersaturated system. Such a
system is stable, and there should be no energy
dissipation. This involves all fluxes Jn!n+1

equaling zero. Using Eq 58, the following is
obtained:

anþ1 ¼ �anþ1 mð Þ ¼ �bn mð Þ
�Cn mð Þ
�Cnþ1 mð Þ (Eq 63)

where overlined quantities are evaluated in the
system at equilibrium characterized by its
effective chemical potential, m. In particular,
the cluster size distribution is the equilibrium
relation given by Eq 49. Using the expression
(Eq 59) for the condensation rate, this finally
leads to the following expression for the evapo-
ration rate:

anþ1 ¼ bnC0 exp Gnþ1 �Gn �G1ð Þ=kT½ � (Eq 64)

Because the condensation rate varies linearly
with the monomer concentration, the contribu-
tion of the effective chemical potential cancels
out in the expression (Eq 63) of an. The starting
assumption is recovered; the evaporation rate
depends only on the cluster free energy and
not on the overall state of the cluster gas char-
acterized by the effective chemical potential, m.
Using the generalized capillary approximation
(Eq 55), one can show that the evaporation rate
actually depends only on the cluster interface
free energy:

anþ1 ¼ bnC0 exp 36p�1
2

� �1=3n
� ½ nþ 1ð Þ2=3snþ1 � n2=3sn � s1�=kT

o
(Eq 65)

The evaporation rate is then independent of the
nucleation free energy, DGnuc, which does not
appear in any parameter. The nucleation free
energy is implicit in cluster dynamics; there is
no need to know it, but, if needed, one can cal-
culate it from the cluster gas thermodynamic.
This is in contrast with classical nucleation the-
ory, where the nucleation free energy is an
input parameter. On the other hand, cluster
dynamics is very sensitive to the interface free
energy as it appears in an exponential in the
expression (Eq 65) of the evaporation rate. It
is very important to have a correct evaluation
of this interface free energy, especially of its
variations with the cluster size, at least for
small sizes.
In this approach, the evaporation rate is

derived assuming that it is an intrinsic property
of the cluster. Sometimes, one derives this
parameter assuming instead that a hypothetical
constrained equilibrium exists for the clusters
in the supersaturated system; the equilibrium
cluster size distribution (Eq 49) is taken to hold,
although the system is supersaturated and can-
not be at equilibrium. The evaporation rate is
then obtained by imposing a detailed balance
for Eq 58 with respect to this constrained equi-
librium. Comparison with atomic simulation of
the magnetization reversal of an Ising model
(Ref 20) has shown that this constraint equilib-
rium assumption is good. The same conclusion

was reached for subcritical clusters in the case
of precipitation in the solid state (Ref 50). Katz
and Wiedersich (Ref 51) pointed out that this
constrained equilibrium assumption generally
leads to the same expression of the evaporation
rate as the intrinsic property assumption. In par-
ticular, this is true when the condensation rate
varies linearly with the monomer concentration,
as is the case here (Eq 59).
When the growth and decay of clusters is

controlled by a reaction at the interface (ballis-
tic regime), it is also possible to directly com-
pute the condensation and evaporation rates
(Ref 44). An atomistic model is used to
describe the physical process at the atomic
scale, and the corresponding rates are obtained
by thermal averaging through Monte Carlo
sampling. Detailed balance is now imposed at
the atomic scale. This ensures that the detailed
balance at the cluster scale, as given by
Eq 63, is also checked. A huge computational
effort is required, but this could be optimized
by calculating the cluster interface free energies
and their condensation and evaporation rates at
the same time.
Numerical Scheme. The evolution of the

cluster size distribution is obtained by integrat-
ing the set of equations (Eq 57). A direct
approach can become cumbersome because
the number of differential equations varies line-
arly with the size of the largest cluster. The
maximum size of the cluster that can be consid-
ered is therefore limited by the number of dif-
ferential equations that can be integrated. This
problem can be circumvented by noticing that
a detailed description is important only for
small cluster sizes where quantities vary rap-
idly. For large sizes, variations are smoother,
and an approximated description can be used.
The easiest approach to do so is to consider that
the size n is now a continuous variable. One can
then develop Eq 57 and 58 to the second order
about n, and the system evolution is described
by the Fokker-Planck equation (Ref 52):

@Cn

@t
¼ � @

@n
bn � anð ÞCn½ � þ 1

2

@2

@n2
bn þ anð ÞCn½ �

(Eq 66)

This continuous equation can be solved numer-
ically by discretizing the continuous variable n.
The best way to handle large cluster sizes is to
use a varying increment greater than 1 and
increasing with the cluster size. A convenient
solution is an increment growing at a constant
rate l. The variable n is then discretized
according to:

nj ¼ j; 8j 	 nd

nj ¼ nd þ 1� lj�nd

1� l
; 8j � nd

(Eq 67)

where nd is the number of classes for which the
discrete equation (Eq 57) is used. Above this
size, one integrates instead the discretized ver-
sion of Eq 66, which is:
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þ 1

njþ1 � nj�1
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� 
þ bnj

þ anj

njþ1 � nj

�

þ @

@n
bnj

þ anj

� �
Cnjþ1

(Eq 68)

The evolution of the monomer concentration is
approximated by:

@C1

@t
¼ �2b1C1 þ a2C2 þ

Xnd

j�2

anj
� bnj

� 
Cnj

þ
X
j�nd

anj
� bnj

� njþ1 � nj�1

2
Cnj

(Eq 69)

This numerical scheme is simple and allows
large cluster sizes to be reached with a reason-
able number of differential equations.Typically,
it is possible to simulate clusters containing
more than 4 million atoms by using 100 discrete
classes and 400 continuous classes with a grow-
ing increment rate l = 1.03. It should neverthe-
less be mentioned that this numerical scheme
does not strictly conserve the matter. By using
reasonable values for the discretization para-
meters l and nd, the losses are generally insig-
nificant, but, in any case, they must be checked
afterward to see if they are acceptable. Onemust
also verify that the concentration of the largest
size has not evolved at the end of the simulation.
Another numerical approach has been pro-

posed by Kiritani (Ref 53) to solve the set of
differential equations (Eq 57) while allowing
large cluster sizes to be reached. His grouping
method consists of replacing a group of master
equations by only one equation representing the
class. It assumes that the number of clusters of
each size in a group is the same and that the
condensation and evaporation rates for clusters
in a group do not vary. Unfortunately, it has
been shown that the result can be very bad if
the grouping is not carried out properly (Ref
54). Furthermore, as in the previous scheme, it
does not strictly conserve the matter, even with
an optimized grouping. Golubov et al. (Ref 55)
proposed a new grouping method that can con-
serve the matter. For this purpose, the first and
second moments of each group are considered,
and two equations for each class are obtained.
The first moment equation controls the time
evolution of the cluster size distribution, and
the second moment equation ensures the matter
conservation. Such a numerical scheme there-
fore requires twice as many equations as the
one proposed previously.

The Link with Classical
Nucleation Theory

The main results of classical nucleation the-
ory have actually been derived from cluster
dynamics, that is, from the master equation
(Eq 57) describing the time evolution of the
cluster population. This derivation is interest-
ing because it allows a better understanding
of the assumptions behind the classical nucle-
ation theory. Moreover, it provides insights
into how this theory can be further developed
to broaden the range where it applies. In the
following subsection, the definition of the crit-
ical size in cluster dynamics is compared with
the classical ones, and then it is shown how the
steady-state nucleation rate and the
corresponding cluster size distribution can be
derived from the master equation. The deriva-
tion of the incubation time is not given here
but can be found in Ref 26 and 27, for
instance.
Critical Size. Subcritical clusters are unsta-

ble; they have a higher probability to decay
than to grow. On the contrary, supercritical
clusters are stable and have a higher probability
to grow than to decay. The critical size n* is
then defined as the size for which the condensa-
tion rate equals the evaporation rate:

bn� ¼ an� (Eq 70)

This definition is actually different from the
one used by the classical nucleation theory,
where the critical size is the size at which the
cluster formation free energy is maximum.
One can show that these two definitions are
consistent and lead to the same expression in
the limit of large cluster sizes. To do so,
rewrite Eq 70 using the expressions of the con-
densation rate (Eq 59) and of the evaporation
rate (Eq 64):

bn�C1 ¼ bn��1C0 exp
Gn� �Gn��1 �G1

kT

� �
(Eq 71)

Then, assume that monomers are at local equi-
librium; their concentration C1 obeys the equi-
librium cluster size distribution (Eq 49). One
can thus eliminate in Eq 71 the monomer free
energy G1:

bn� exp
m
kT

� 
¼ bn��1 exp

Gn� �Gn��1

kT

� �
(Eq 72)

Using the definition DGn = Gn � nm of the clus-
ter formation free energy, Eq 72 can be
rewritten:

bn��1

bn�
exp

�Gn� ��Gn��1

kT

� �
¼ 1 (Eq 73)

Using Eq 55 to express the cluster formation
free energy, one finally obtains that the critical
size verifies:

bn��1

bn�
exp

�Gnuc þ 36p�2
1

� �1=3
� n�2=3sn� � n� � 1ð Þ2=3sn��1

h i
kT

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 1

(Eq 74)

To go further, one needs to take the limit
corresponding to large cluster sizes. One can
then neglect the size dependence of the conden-
sation rate prefactor, bn��1 
 bn� , and of the
cluster interface free energy, sn��1 
 sn� 
 s.
At the critical size, one should therefore check:

�Gnuc þ 36p�2
1

� �1=3
n�2=3 � n� � 1ð Þ2=3
h i

s ¼ 0

(Eq 75)

A limited expansion of Eq 75 for large sizes
leads to the result:

n� ¼ �2/3
36p�2

1

� �1=3s
�Gnuc

" #3
(Eq 76)

One therefore recovers Eq 5 of the critical size
with a geometric factor A corresponding to
spherical clusters. The critical size considered
by classical nucleation theory corresponds to
the one of cluster dynamics in the limit of large
cluster sizes. However, when the critical size is
small, both definitions may differ. This coher-
ence of both definitions at large size and this
deviation at small sizes has been observed in
atomic simulations (Ref 20).
The Steady-State Nucleation Rate. One can

calculate the steady-state nucleation rate, Jst,
corresponding to the master equation (Eq 57).
To do so, one must make two assumptions:

� There is a small size below which clusters
have their equilibrium concentration, given
by Eq 49. Clusters smaller than the critical
size appear and disappear spontaneously
through thermal fluctuations, and their con-
centrations stay roughly at equilibrium. The
smaller the cluster, the better this assumption.
The most convenient choice is therefore to
impose thermal equilibrium for monomers:

C1ðtÞ ¼ Ceq
1 ¼ C0 exp �G1 � mðtÞ

kT

� �
(Eq 77)

� There is a maximum cluster size, N, above
which the cluster concentration remains null:
CN (t) = 0. This assumption cannot be
checked for a true steady state without
invoking a demon that removes clusters that
appear at the size N and dissolves them into
monomers. Nevertheless, one can always
define at a given time a size large enough
so that the cluster distribution did not propa-
gate to this size.

By definition, the steady-state nucleation rate
can be calculated at any cluster size n. At the
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steady-state, all cluster concentrations remain
constant. As a consequence:

@Jn!nþ1

@n
¼ 0 (Eq 78)

and the steady-state nucleation rate can be cal-
culated at any given cluster size. Using the
expression of the cluster flux (Eq 58) with Eqs
59 and 64 for the condensation and evaporation
rates, one obtains:

J st ¼ bn C1Cn � Cnþ1C0 exp
Gnþ1 �Gn �G1

kT

� �� �
;

n ¼ bnC1 exp �Gn � nm
kT

� �
Cn exp

Gn � nm
kT

� ��

�Cnþ1 exp
Gnþ1 � nþ 1ð Þm

kT

� ��
(Eq 79)

This equation uses the fact that monomers are
at equilibrium (Eq 77) to go from the first to
the second line. After rearranging the terms
between the left and right sides, a sum between
a minimal and a maximal size is derived:

Xn2

n¼n1

J st

bnC1C0 exp � Gn�nm
kT

� �
¼ Cn1

C0 exp � Gn1
�n1m
kT

h i� Cn2þ1

C0 exp �Gn2þ1� n2þ1ð Þm
kT

h i
(Eq 80)

n1 = 1 is chosen so that the first term on the
right side is equal to 1. With n2 = N � 1, the
second term is null; it is assumed CN = 0, and
the exponential is tending to 1 for high enough
N. This results in:

J st ¼ C1C0

1PN�1

n¼1

1
bn
exp Gn�nm

kT

� � (Eq 81)

This gives an exact expression of the steady-
state nucleation rate under both of the previous
assumptions.
The sum appearing in Eq 81 can be easily

evaluated. To do so, a continuous approximation
is made to transform the sum into an integral.
The cluster formation free energy, DGn = Gn �
nm, presents a maximum at the critical size n*.
As a consequence, the main contribution to the
integral arises from sizes around the critical size
and can be evaluated by a Taylor expansion
around n*. Finally, neglecting the variations of
bn in front of the exponential leads to:

Jst ¼ C1C0bn�

� 1ÐN�1

1
exp �Gn� þ 1

2
@2�Gn

@n2

			
n¼n�

n� n�ð Þ2
� �

kT

� �
dn

(Eq 82)

Changing the integration limits in �1 and +1,
the result of classical nucleation theory is
recovered:

J st ¼ b�ZC0 exp ��G�

kT

� �
(Eq 83)

where b* = C1bn*, �G� ¼ �Gn� and the
Zeldovich factor is given by Eq 9.
The Steady-State Cluster Size Distribution.

Once the steady-state nucleation rate is known,
one can easily obtain the corresponding cluster
size distribution. Equation 80 is again used with
the limits n2 = N � 1, so that the last term on
the right side is still null, and with n1 = n, the
size for calculating the cluster concentration.
This leads to the result:

Cst
n ¼ C0 exp �Gn � nm

kT

� �XN
j¼n

J st

bnC1C0 exp �Gj�jm
kT

h i
(Eq 84)

Similar to the steady-state nucleation rate, the
sum can be evaluated by making a continuous
approximation, developing the cluster forma-
tion free energy around the critical size, and
considering the limit N ! 1. One obtains:

Cst
n ¼ C0 exp �Gn � nm

kT

� �
J st

C1C0bn�ð1
n

exp �Gn� þ 1/2
@2�Gj

@j2
j� n�ð Þ2

� �
kT

� �
dj

¼ 1/2 erfc
ffiffiffi
p

p
Z n� n�ð Þ½ �C0 exp �Gn�nm

kT

� �
(Eq 85)

The stationary distribution therefore corre-
sponds to the equilibrium one, reduced by a
factor varying from 0 for large sizes to 1 for
small sizes. Well below the critical size, that
is, for n 	 n* � Dn/2 with Dn given by
Eq 10, this factor differs only slightly from 1,
and the stationary distribution corresponds to
the equilibrium one. At the critical size n*, this
factor is exactly one-half, and in the vicinity
of n*, the stationary distribution can be
approximated with Eq 8.
Discussion. This derivation of quantities

predicted by classical nucleation theory from
cluster dynamics formalism enlightens the
approximations made by this theory. It assumes
that the supersaturation is not too high, so that
the critical size is large enough. This allows
one to consider the size as a continuous instead
of a discrete variable and to make a finite
expansion of key parameters around the critical
size. Classical nucleation theory may therefore
appear as more restricted than the kinetic
approach based on the master equation (Eq 57),
but the situation is not so simple.
One severe restriction of cluster dynamics is

the thermodynamic model on which it relies. It
is based on the cluster gas model of Frenkel
(Ref 48), which is valid for a dilute system.
Strictly speaking, cluster dynamics should only
be used in the dilute case. If one wants to study
more concentrated systems, the cluster gas
model must be extended. Such an extension has
been performed by Lépinoux (Ref 56) and is pre-
sented in the section “Configurational Frustra-
tions between Clusters” in this article. On the

other hand, classical nucleation theory does not
rely on the cluster gas thermodynamic model.
Instead, it makes use of the nucleation driving
force that may be calculated with any thermody-
namic model, in particular, one better suited to
concentrated systems. Therefore, it is not a prob-
lem to use the classical nucleation theory to study
concentrated systems as long as one correctly
calculates the nucleation driving force.
Both formalisms also differ in the way they

describe the parent and the nucleating phases.
In the classical theory, one differentiates both
phases, and nucleation is described through het-
ero-phase fluctuations corresponding to precipi-
tates embedded in the parent phase. Such a
differentiation does not appear in the kinetic
approach, where one deals with only one system
that is described as a gas of clusters having a
fixed stoichiometry and embedded in a pure sol-
vent. This description difference may become
relevant when modeling concentrated systems,
because the values of the input parameters may
then differ according to the chosen, thermody-
namic or kinetic, approach. This is the case, for
instance, of the interface free energy. In cluster
dynamics, this corresponds to the energy cost of
an interface between a cluster with a fixed stoi-
chiometry and the pure solvent, whereas in clas-
sical nucleation theory, one should consider that
the precipitate and the parent phase are not pure
and that solubility exists in both phases. The con-
centration appearing in the expression of the con-
densation rate may also differ between both
approaches, as already quoted in the previous
section, “Condensation Rate,” in this article.
This is either themonomer concentration (cluster
dynamics) or the total solute concentration
(classical nucleation theory).
All these subtle differences between cluster

dynamics and classical nucleation theory have
been discussed by Martin (Ref 49) in the case
of precipitation in the solid state. He showed
that both approaches were consistent and led
to the same expressions in the dilute limit.

Extensions of Cluster Dynamics

The master equation (Eq 57) can be modified
to describe nucleation under less restricted con-
ditions than the ones of the previous subsections
and then to build extensions of the cluster
dynamics. In particular, the assumptions that
only monomers can react and that clusters have
a fixed stoichiometry corresponding to the equi-
librium nucleating phase can be removed.
Mobile Clusters. Until now, it was assumed

that only monomers are mobile. This assump-
tion is not always valid. There is no reason to
think, for instance, that all clusters except
monomers are immobile in solidification. Diffu-
sion of small clusters can also happen in solid-
solid phase transformations. An interesting
example is copper precipitation in iron, where
atomic simulations have revealed that clusters
containing up to several tens of copper atoms
can be much more mobile than individual cop-
per atoms (Ref 57). The master equation should
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therefore be modified to account for reactions
involving clusters larger than monomers. Such
a generalization of the cluster dynamics formal-
ism has been performed by Binder and Stauffer
(Ref 4–6).
The probability of observing a cluster con-

taining n atoms now obeys the generalized mas-
ter equation:

@Cn

@t
¼ 1/2

Xn�1

n0¼1

J n� n0; n0 ! nð Þ

�
X1
n0¼1

J n; n0 ! nþ n0ð Þ � J n; n ! 2nð Þ

(Eq 86)

where J(n,n0 ! n + n0) is the cluster flux
corresponding to the reaction between the classes
n and n0 to the class n + n0. The factor ½ appearing
in Eq 86 accounts for overcounting the pairs {n�
n0,n0} in the summation. In this equation, one
should not forget that the reactions nþ n Ð 2n
involve two clusters of size n. When reactions
are limited to reactions involving monomers, n0
can only take the value 1, and n � 1 in the first
sum and 1 in the second sum; the classical master
Eq 57 of cluster dynamics is recovered.
The cluster flux is the difference between the

condensation of two clusters of sizes n and n0
and the splitting of a cluster of size n + n0 into
two clusters of sizes n and n0:

J n; n0 ! nþ n0ð Þ ¼ b n; n0 ! nþ n0ð ÞCnCn0

� a nþ n0 ! n; n0ð ÞCnþn0

(Eq 87)

One then obtains an expression for the absorp-
tion coefficient b(n, n0). If the reaction is lim-
ited by the cluster diffusion, this coefficient is
given by (Ref 24):

b n; n0 ! nþ n0ð Þ ¼ 4pRn;n0
Dn þDn0

�1

; 8n 6¼ n0

b n; n ! 2nð Þ ¼ 4pRn;n
Dn

�1

(Eq 88)

where Rn,n0 is a capture radius and can be approxi-
mated by the sum of the two reacting cluster radii.
In the expression (Eq 13) used in the classical
nucleation theory, this capture radius was identi-
fied with the radius of the critical cluster, and the
monomer radius was neglected.
If the diffusion coefficients of then-mers are not

known, one canuse an approximationproposedby
Binder et al. (Ref 58, 59). They simply consider
that cluster diffusion is due to jumps of atoms
located at the interface.When an atom jumps over
a distance rs with a frequency Gs, the center of
gravity of the cluster jumps over rs/n. Since the
number of possible jumps at the interface
increases with its area as n2/3,Dn depends on n as:

Dn ¼ �s
rs
n

� 2
n2=3 ¼ D1n

�4=3 (Eq 89)

In the case of precipitation in the solid state,
one should not forget that substitutional atoms

diffuse through exchange with vacancies and
that a vacancy enrichment at the cluster interface
is possible. In such a case, Eq 89 must be cor-
rected with a prefactor to consider the vacancy
concentration at the interface (Ref 57). This
vacancy segregation is the reason why clusters
containing several copper atoms aremoremobile
than monomers in iron (Ref 57).
The evaporation rate is still obtained by

assuming that it is an intrinsic property of the
cluster (or imposing a constrained equilibrium),
thus leading to:

a nþ n0 ! n; n0ð Þ

¼ b n; n0 ! nþ n0ð ÞC0 exp
Gnþn0 �Gn �Gn0

kT

� �
(Eq 90)

All parameters are thus determined, and the
master equation (Eq 86) can be numerically
integrated.
Binder and Stauffer (Ref 4, 6) also extended

classical nucleation theory to obtain expres-
sions of the steady-state nucleation rate and
the incubation time, taking into account the
mobility of all clusters. They started from the
master equation (Eq 86) and imposed the
detailed balance corresponding to Eq 90. They
obtained expressions similar to the classical
ones—Eq 11 for the steady-state nucleation rate
and Eq 14 for the incubation time—except that
now the growing rate, b*, of the critical cluster
incorporates contributions of all clusters. This
growing rate is given by:

b� ¼
Xnc

n¼1

b n�; n ! nþ n�ð Þn2C0 exp �Gn � nm
kT

� �
(Eq 91)

where nc is a cut-off size corresponding to the
correlation length of thermal fluctuations. It
seems reasonable to identify this cut-off size
with the critical size n*. When only reactions
involving monomers can occur, the sum in
Eq 91 is limited to the term n = 1, and one
recovers the classical growing rate b� ¼ bn�Ceq

1 .
When reactions involving other clusters are pos-
sible, this growing rate increases. The mobility
of small clusters therefore leads to an increase
of the nucleation rate and a decrease of the
incubation time by the same factor.
Nonstoichiometric Clusters. Until now, it

has been assumed that clusters have a fixed
stoichiometry corresponding to the equilibrium
of the nucleating phase. In some systems, the
composition of the nucleating phase can vary.
One therefore must extend cluster dynamics to
allow the cluster stoichiometry to vary (Ref 7).
To illustrate such an extension of the formal-

ism, consider the example of a system where
the nucleating phase is composed of two ele-
ments, A and B, and assume that the composi-
tion can vary. A cluster is then a group of A
and B atoms that are linked by a neighborhood
relation. If the clusters are homogeneous (no
segregation of one element at the interface, for

instance), they can simply be described by two
variables: the number i and j of elements A
and B they contain. Therefore, Gi, j is the free
energy of such a cluster. If the system is under-
saturated, one can show that the concentration
of {i,j} clusters is given by the distribution:

Ceq
i;j ¼ C0 exp� �Gi;j � imA � jmB

kT

� �
(Eq 92)

where mA and mB are Lagrange multipliers
ensuring matter conservation for A and B and
are related to their chemical potentials.
It is assumed that only monomers are mobile.

The time evolution of clusters containing i A
elements and j B elements is then governed by
the master equation:

@Ci;j

@t
¼ Ji�1;j!i;j � Ji;j!iþ1;j þ Ji;j�1!i;j � Ji;j!i;jþ1;

8fi; jg 6¼ f1; 0g and fi; jg 6¼ f0; 1g
@C1;0

@t
¼ �

X
i�0

X
j�0

Ji;j!iþ1;j � J1;0!2;0

@C0;1

@t
¼ �

X
i�0

X
j�0

Ji;j!i;jþ1 � J0;1!0;2

(Eq 93)

Fluxes are written as a difference between the
evaporation and the condensation of a monomer:

Ji;j!iþ1;j ¼ bi;j!iþ1;jC1;0Ci;j � aiþ1;j!i;jCiþ1;j

Ji;j!i;jþ1 ¼ bi;j!i;jþ1C0;1Ci;j � ai;jþ1!i;jCi;jþ1

(Eq 94)

The condensation and evaporation rates are still
linked by a detailed balance condition, leading
to the relations:

aiþ1;j!i;j ¼ bi;j!iþ1;j exp
Giþ1;j �Gi;j �G1;0

kT

� �

ai;jþ1!i;j ¼ bi;j!i;jþ1 exp
Gi;jþ1 �Gi;j �G0;1

kT

� �
(Eq 95)

One therefore needs a physical modeling of the
condensation process to express the coefficients
bi,j!i+1,j and bi,j!i,j+1. The evaporation rates are
then obtained by Eq 95, and the kinetics are
obtained by integration of Eq 93.
Starting from the master equation (Eq 93),

the classical nucleation theory has been
extended to treat a multicomponent system.
This was first performed by Reiss (Ref 7) for
a binary system such as the one considered here
and then extended by Hirschfelder (Ref 8) to a
general multicomponent system. Both authors
assumed that the growth of the critical nucleus
was entirely driven by the free energy. It was
realized later by Stauffer (Ref 9) that the
growth direction in the {i,j} plane may also be
affected by the condensation coefficients, espe-
cially when coefficients corresponding to A and
B condensation have very different values. He
proposed an expression of the steady-state
nucleation rate for the binary system that was
then extended to a multicomponent system by
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Trinkaus (Ref 10). All these approaches calcu-
lated the steady-state nucleation rate in the
vicinity of the critical nucleus. Wu (Ref 11)
instead defined a global nucleation rate that
should correspond more closely to what can be
measured experimentally. The following gives
the expression of the steady-state nucleation
rate for a binary system obeying the master
equation (Eq 93) in the local approach as
derived by Vehkamäki (Ref 12). Expressions
in the more general case—multicomponent
systems and mobile clusters other than mono-
mers—can be found in the cited references.
The critical cluster corresponds to the saddle

point of the cluster formation free energy DGi,j

= Gi,j � imA � jmB appearing in the equilibrium
distribution (Eq 92). It is thus defined by the
equations:

@�Gi;j

@i
¼ 0 and

@�Gi;j

@j
¼ 0 (Eq 96)

DG* is the corresponding formation free
energy, and H* is the Hessian matrix calculated
for the critical cluster:

H� ¼
@2�Gi;j

@i2

			
fi;jg�

@2�Gi;j

@i@j

			
fi;jg�

@2�Gi;j

@i@j

			
fi;jg�

@2�Gi;j

@j2

			
fi;jg�

0
B@

1
CA (Eq 97)

This Hessian matrix has two eigenvalues. One
of them is negative and gives the direction in the
{i,j} space corresponding to themaximal decrease
of the critical cluster free energy. In the approach
of Reiss and Hirschfelder, this direction corre-
sponds to the nucleation flow. Nevertheless, one
should generally take into account that the con-
densation rates for A and B elements may be dif-
ferent, because this will impact the direction of
the nucleation flow. Therefore, a newmatrix char-
acterizing the condensation process for the critical
cluster is defined:

B� ¼ C1;0bi;j!iþ1;j 0

0 C0;1bi;j!i;jþ1

� �				
fi;jg�

(Eq 98)

The fact that this matrix is diagonal reflects the
assumption that only reactions involving mono-
mers are possible. The angle y of the nucleation
flow in the {i,j} space is then defined by:
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(Eq 99)

The equivalent of the Zeldovitch factor is given
by:

Z ¼ �H�
11 þ 2H�

12 tan yþH�
22 tan

2 y

1þ tan2 yð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det H�ð Þj jp (Eq 100)

and the average growth rate of the critical
cluster by:

b� ¼ det B�ð Þ
B�
11 sin

2 yþ B�
22 cos

2 y
(Eq 101)

With these definitions, the steady-state nucle-
ation rate keeps its usual expression:

J st ¼ b�ZC0 exp ��G�

kT

� �
(Eq 102)

Configurational Frustrations between Clus-
ters. Cluster dynamics simulations rely on the
cluster gas approximation derived in the section
“Cluster Gas Thermodynamics” in this article.
This thermodynamic approximation, initially
introduced by Frenkel (Ref 48), is strictly valid
only in the dilute limit. It indeed assumes that
the space occupied by the clusters can be
neglected when computing the configurational
partition function (Eq 45) of the cluster gas;
each cluster occupies only one site, no matter
its size. Lépinoux (Ref 56) has shown that this
approximation can be improved to properly
take into account frustrations between clusters,
that is, the space forbidden to a given cluster
by other clusters. This allows the modeling of
systems that are not as dilute as required by
Frenkel’s treatment.
Note that Vj,n is the number of sites that a

cluster of size j forbids to a cluster of size n.
According to Lépinoux (Ref 56), the equilib-
rium cluster size distribution is given by:

Ceq
n ¼ C0 exp �Gn � nm

kT

� �
exp �

X
j

Ceq
j Vj;n

 !

(Eq 103)

or equivalently:

Ceq
n ¼ C0

Ceq
1

C0

� �n

exp �Gn � nG1

kT

� �

exp �
X
j

Ceq
j Vj;n � nV1;n

� �" # (Eq 104)

It is clear that Frenkel’s approximation corre-
sponds to neglecting all exclusion volumes
(Vj,n = 0). When exclusion volumes are consid-
ered, only an implicit expression of the size dis-
tribution is obtained; equilibrium cluster size
concentrations, Ceq

j , are required to evaluate the
right side of Eq 103 or 104. A self-consistent
loop can be used to evaluate the equilibrium dis-
tribution, starting from the distribution given by
Frenkel’s approximation (Eq 49 or 50).
The exclusion volumes can be approximated

by identifying a cluster of size n with a sphere
of radius Rn. This leads to:

Vj;n ¼ 4p
3

Rj þRn

� �3
(Eq 105)

The radii Rn depend on the temperature because
a cluster becomes less compact with higher
temperatures due to its configurational entropy.
Nevertheless, it can be reasonably assumed that
these radii are close to the ones corresponding
to the more compact cluster shape (Ref 56),
and Eq 61 can be used.
The second step is to obtain the kinetic coef-

ficients an and bn. As previously mentioned, the

condensation rate bn is obtained by the proper
physical modeling of the condensation process,
leading to an expression of the form in Eq 59.
However, it is no longer possible to assume that
the evaporation rate is an intrinsic property of
the cluster; the obtained expression would vio-
late the assumption because of the frustration
contribution in the cluster size distribution.
The constrained equilibrium is not satisfactory
either, because it leads to a diverging frustra-
tion correction and hence diverging evaporation
rates in supersaturated systems. There is actu-
ally no framework that allows rigorously deriv-
ing the evaporation rate from the condensation
rate, taking into account cluster frustrations. It
seems that the most reasonable scheme is to
consider that the classical expression (Eq 64)
of the evaporation rate must be corrected from
frustrations caused by the instantaneous cluster
size distribution and not by a hypothetical equi-
librium one:

anþ1 tð Þ ¼ bnC0 exp
Gnþ1 �Gn �G1

kT

� �

exp
X
j

Cj tð Þ Vj;nþ1 � Vj;n � Vj;1

� �" #

(Eq 106)

This set of condensation and evaporation
rates ensures that the cluster distribution evolves
toward the equilibrium distribution given by
Eq 103 for subcritical clusters. Equation 106
clearly shows that the evaporation rate is no
longer an intrinsic property of the cluster,
because it now depends on the whole cluster
distribution. Moreover, because this parameter
depends on the instantaneous concentrations
Cj(t), it must be calculated at each time step.
When the system is dilute, the frustration cor-
rection in Eq 106 becomes negligible, and the
classical expression of the condensation rate is
recovered. Comparisons with atomic simula-
tions (Ref 50, 56) have shown that this treatment
of cluster frustrations greatly improves the abil-
ity of cluster dynamics to describe nucleation
kinetics for high supersaturations.

Limitations of the Cluster Description

The previous extensions of cluster dynamics
have allowed the removal of two limitations
of classical nucleation theories due to initial
simplifying assumptions:

� Only monomers are mobile, and therefore,
only reactions involving monomers are
possible.

� The cluster stoichiometry is fixed and known
a priori. It is assumed to correspond to the
composition of the nucleating phase at equi-
librium with the mother phase.

The extension to mobile clusters is quite
straightforward, and that to nonstoichiometric
clusters shows that it was possible to take
into account a nonfixed cluster composition.
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The composition of the nucleating cluster was
found to be the one minimizing the work,
DG*, necessary to form them.
Nevertheless, some limitations still remain

for this nucleation modeling approach. One of
these limitations arises from the needed
assumption that clusters are homogeneous. This
assumption is induced by the fact that clusters
are only described by the number of elements
they contain. This is not always valid because
segregation may occur in some systems; it can
be more favorable for one element to lie at the
interface between the cluster and the matrix
instead of in the core of the cluster. In such a
case, it is necessary to introduce at least one
more parameter to describe the cluster struc-
ture. Binder and Stauffer (Ref 4) have extended
cluster dynamics formalism to incorporate addi-
tional parameters describing cluster internal
degrees of freedom, but the application of the
formalism appears quite intricate.
Cahn and Hilliard (Ref 60) proposed a model-

ing approach different from the classical one pre-
sented here, which is based on a cluster
description. Their approach agrees with the clas-
sical one at low supersaturations and underlines
some limitations of the classical approach with
increasing supersaturations. They showed that
the work, DG*, required to form a critical cluster
becomes progressively less than that given by the
classical theory and continuously approaches
zero at the spinodal limit, thus for a finite super-
saturation. By contrast, the classical theory pre-
dicts that this work becomes zero only for an
infinite supersaturation (Eq 6). Moreover, the
classical theory assumes that clusters are homo-
geneous and that their composition is the one
minimizing the work, DG*. Cahn and Hilliard
showed that the composition at the center of the
nucleus approaches that of the exterior mother
phase when the supersaturation tends to the spi-
nodal limit, and that the interface becomes more
diffuse until eventually no part of the nucleus is
even approximately homogeneous. The last dis-
agreement found with the classical theory is the
variation of the critical cluster size. They showed
that this size first decreases, passes through a
minimum, and then increases to become infinite
when the supersaturation increases and
approaches the spinodal limit. Nevertheless,
some recent experiment observations (Ref 61,
62) have contradicted this last point, showing
no divergence of the cluster critical size when
approaching the spinodal limit.

Conclusions

Two different approaches based on an equiva-
lent cluster description can therefore be used to
model nucleation in a phase-separating system.
In the classical nucleation theory, one obtains
expressions of the nucleation rate and the incuba-
tion time. These expressions depend on a limited
number of input parameters: the nucleation

driving force, the interface free energy, and the
condensation rate. On the other hand, the kinetic
description of nucleation relies on a master equa-
tion. Cluster dynamics simulations, that is, the
integration of this master equation, allow the
time evolution of the cluster size distribution to
be obtained. The input parameters needed by
such simulations are the cluster condensation
rates and the cluster free energies. At variance
with classical nucleation theory, no external
thermodynamic model is needed to calculate
the nucleation driving force; cluster dynamics
simulations possess their own thermodynamic
model, the cluster gas. As shown previously,
both approaches are intrinsically linked, but it
is worth saying that they differ in the way they
can be used to model the kinetics of phase trans-
formations. Classical nucleation theory is able to
model only the nucleation stage. To model the
whole kinetics, one must couple this theory with
classical descriptions of the growth and coarsen-
ing stage. Such a coupling can be done following
the Wagner and Kampmann approach (Ref 63,
64). On the other hand, the cluster dynamics
modeling approach is not restricted to the nucle-
ation stage. It also predicts growth and coarsen-
ing kinetics. To conclude, this cluster approach
is well suited when one knows what the nucleat-
ing new phase looks like. Such information is not
always available a priori. One then must use
other modeling techniques. These can be atomic
simulations, such as molecular dynamics (Ref
65, 66), for condensation of a gas into a liquid
or crystallisation of a liquid, or kinetic Monte
Carlo (Ref 67–69) for solid-solid phase transfor-
mations, or phase-field simulations (see the
Appendix at the end of this article). These simu-
lations are computationally much more time-
consuming and, as a consequence, are limited
to the study of high enough supersaturations.
Nevertheless, they can be very useful for under-
standing what happens in the nucleation stage
and then building a classical model based on a
cluster description and extending the range of
supersaturations that can be simulated. More-
over, these atomic or phase-field simulations
can be a convenient way to calculate the input
parameters needed by classical theories.

Appendix—Phase-Field Simulations

The phase-field approach describes the differ-
ent phases through continuous fields such as the
atomic concentration or long-range-order para-
meters. The spatial and temporal evolution of
the microstructure is then driven by differential
equations obeyed by these fields. Because this
technique is the object of the article “Phase-Field
Modeling of Microstructure Evolution” in this
Volume, this Appendix addresses how nucle-
ation can be handled in such simulations.
The main advantage of phase-field simulations

is that all spatial information on the microstruc-
ture is obtained. This is in contrast with classical
approaches where a limited number of informa-
tion is known, such as the flux of nucleating

particles (classical nucleation theory) or the clus-
ter size distribution (cluster dynamics). This may
make the phase-field approach an attractive tech-
nique for modeling nucleation in specific situa-
tions. Indeed, such simulations perfectly take
into account phase inhomogeneities. These inho-
mogeneities can be, for instance, a solute segrega-
tion in the vicinity of a defect such as a
dislocation. Phase-field simulations therefore
allow the description of heterogeneous nucleation
associated with a variation of the driving force.
Moreover, in the case of solid-solid phase trans-
formations, the elastic energy is fully contained
in the calculation of the system free energy (Ref
41). One therefore does not need a specific expres-
sion for the elastic self-energy of a nucleating par-
ticle nor for its elastic interaction with the existing
microstructure. The correlated and collective
nucleation due to elastic interaction between pre-
cipitates is naturally described. Two different
roads have been proposed to include nucleation
in phase-field simulations.
One can use the phase-field approach to cal-

culate spatial variations of the concentrations
and the order parameters describing the differ-
ent phases as well as the inhomogeneous strain
created by the microstructure. One then calcu-
lates the nucleation free energy as a function
of the local phase fields and the local strain.
Finally, the expression of the nucleation rate
given by the classical theory is used to seed
the phase-field simulations with new nuclei
(Ref 70–72). In this way, one obtains a spatial
variation of the nucleation rate caused by the
microstructure inhomogeneities.
The phase-field approach offers another way

to model nucleation without relying on the
classical theory. One can add to the equations
describing the phase-field evolution a stochas-
tic term through a Langevin force to describe
thermal fluctuations. This allows nucleation
to proceed. Phase-field simulations can then
naturally describe the spatial and temporal
evolution of the microstructure, from the
nucleation to the coarsening stage (Ref 73–
75). Nevertheless, this description is usually
only qualitative; to obtain a fully quantitative
modeling, the amplitude of the Langevin force
must be carefully set. In particular, it must
depend on the coarse-graining size similar to
the other ingredients of the simulation (chemi-
cal potentials, mobilities, stiffness coeffi-
cients) (Ref 76). Such phase-field simulations
that naturally handle nucleation through ther-
mal fluctuations suffer from the small time-
step needed to catch the rare event of a nucle-
ating particle. On the other hand, simulations
using an explicit description of the nucleation
do not have this drawback.
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