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a b s t r a c t 

The influence of magnetism on the properties of screw dislocations in body-centered cubic chromium 

is investigated by means of ab initio calculations. Screw dislocations having Burgers vectors 1/2 〈 111 〉 
and 〈 100 〉 are considered, following experimental observations showing activity for both slip systems. 

At low temperature, chromium has a magnetic order close to antiferromagnetism along 〈 100 〉 directions, 

for which 1/2 〈 111 〉 is not a periodicity vector. Hence, dislocations with Burgers vectors 1/2 〈 111 〉 generate 

magnetic faults when shearing the crystal, which constrain them to coexist and move pairwise, leading 

to dissociated 〈 111 〉 super-dislocations. On the other side, 〈 100 〉 is a periodicity vector of the magnetic 

order of chromium, and no such magnetic fault are generated when 〈 100 〉 dislocations glide. Dislocation 

properties are computed in the magnetically ordered and non magnetic phases of chromium for compar- 

ison purposes. We report a marginal impact of magnetism on the structural properties and energies of 

dislocations for both slip systems. The Peierls energy barrier opposing dislocation glide in {110} planes is 

comparable for both 1/2 〈 111 〉 {110} and 〈 100 〉 {110} slip systems, with lower Peierls stresses in the mag- 

netically ordered phase of chromium. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

As a body-centered cubic (BCC) metal, the plastic behavior of

chromium (Cr) at low temperature is a priori governed by screw

dislocations gliding in {110} planes [1] . The motion of these dis-

locations is difficult and needs thermal activation, leading to brit-

tleness of Cr at low temperature [2–8] . These dislocations have a

Burgers vector corresponding to the smallest periodicity vector of

the crystal lattice, 1/2 〈 111 〉 . However, Cr has a spin-density wave

magnetic ground-state, which shows a locally antiferromagnetic or-

dering along a 〈 100 〉 direction with a modulation of spin magni-

tudes [9,10] , and this Burgers vector does not correspond to a pe-

riodicity vector of the magnetic order. Hence, when the crystal is

sheared by such dislocations, magnetic faults should be generated

in the dislocation glide planes, possibly impeding the motion of

these line-defects. 

Using transmission electron microscopy (TEM), 1/2 〈 111 〉 dislo-

cations were found in strained Cr polycrystals [11–13] at tempera-

tures where magnetic order prevails, below the Néel temperature
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f 311 K. Slip traces analysis confirm that these dislocations are

liding in {110} planes [11,12,14] , with glide in the {112} and {123}

lanes also observed at high temperature [11] . Regarding the dis-

uption of the magnetic order, both Ravlic et al. [15] and Kleiber

t al. [16] show the existence of AF domains at {100} surfaces sepa-

ated by walls using spin-polarized scanning tunneling microscopy

t room temperature. These walls are monoatomic steps with a

eight equal to one-half of the lattice parameter. Some of them are

ot closed, suggesting the presence of dislocations going through

he surface and bounding the magnetic fault defined by the do-

ain walls. These dislocations have a priori a 1/2 〈 111 〉 Burgers vec-

or. 

In addition to these 1/2 〈 111 〉 dislocations, TEM observations

eveal that dislocations with 〈 100 〉 Burgers vectors, also gliding

n {110} planes, are present in magnetically ordered Cr [11–13] .

eid and Gilbert reported at 300 K a cross-slip event incompati-

le with a 〈 111 〉 screw orientation and requiring a 〈 100 〉 Burgers

ector. Such a Burgers vector was confirmed by Hale and Hender-

on Brown [13] : using extinction contrast in TEM, they obtained

 much higher proportion of 〈 100 〉 dislocations in Cr than in iron,

here these 〈 100 〉 can result, like in any BCC metal, from junctions

etween 1/2 〈 111 〉 dislocations. Reid [12] showed that, as a conse-

uence of the strong elastic anisotropy of BCC Cr, 〈 100 〉 disloca-

ions have indeed a similar elastic energy as 1/2 〈 111 〉 despite their

arger Burgers vectors. Cr magnetism at low temperature should

https://doi.org/10.1016/j.actamat.2020.09.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
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Fig. 1. (a) Energy difference �E per atom between the SDW and AF phases as 

a function of the period n of the SDW and its reduced wave vector Q = 1 − 1 /n 

corresponding to the wave vector � q = Q × 2 π/a 0 [100] . The horizontal blue and red 

dashed lines indicate the energy difference for the NM and AF phases respectively. 

The vertical orange line marks the experimental wave-vector of the SDW. (b) Vari- 

ation of the magnetic moments along the propagation direction of the SDW for 

n = 20 . The red lines indicate the magnetic moment of the AF phase. The black and 

white circles represent corner and body-center atoms of the BCC unit-cell. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Table 1 

Lattice parameter a 0 ( ̊A), bulk modulus B and shear mod- 

uli C ′ = (C 11 − C 12 ) / 2 and C 44 (GPa), elastic anisotropy ra- 

tio A = C 44 /C ′ and energy difference �E (meV/atom) with 

respect to the AF ground-state of the NM, AF and SDW 

(for a n = 20 a 0 periodicity) magnetic phases of BCC Cr. 

The experimental data at 4.2 K are taken from Palmer and 

Lee [28] , corresponding to the incommensurate longitudi- 

nal SDW. 

a 0 B C ′ C 44 A �E 

NM 2.847 262 166 98 0.59 12.5 

AF 2.865 186 185 96 0.52 0.0 

SDW 2.857 198 187 101 0.54 6.4 

Exp. 2.884 190 153 104 0.68 / 
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lso favor these 〈 100 〉 dislocations: as 〈 100 〉 is a periodicity vector

f the magnetic order below the Néel temperature, such disloca-

ions can exist without a magnetic fault, in contrast to 1/2 〈 111 〉
islocations. Although these 〈 100 〉 dislocations may be as impor-

ant as 1/2 〈 111 〉 dislocations in BCC Cr, not much is known about

hem. 

The object of this work is to qualify by means of ab initio calcu-

ations the influence of magnetism on the plastic behavior of BCC

r below its Néel temperature. Particularly, we study the competi-

ion between dislocations with Burgers vectors 1/2 〈 111 〉 and 〈 100 〉 ,
hich have been both observed experimentally, and discuss the

onsequences of magnetism on the properties and mobility of the

wo slip systems. We begin by introducing the general methods

sed for this study, covering magnetic and elastic properties, and

hen the generalized stacking fault energies before the two types

f screw dislocations, 1/2 〈 111 〉 and 〈 100 〉 , and discussing the ob-

ained results. 

. Methods and elementary properties 

.1. Computational details 

All calculations in the present work are carried out within den-

ity functional theory (DFT) as implemented in the Vasp code [17] .

he Kohn-Sham states are represented using a plane-wave basis

ith a 500 eV cutoff energy. A projector augmented wave (PAW)

otential [18] is used for Cr including 12 valence electrons, and the

xchange-correlation potential is approximated with the GGA-PBE

unctional [19] . The Methfessel-Paxton broadening scheme is used,

ith a 0.1 eV width. A �-centered k -point sampling of the Bril-

ouin zone is generated using the Monkhorst-Pack scheme, with

 density of 20 k -points per lattice parameter unit length in ev-

ry direction for each simulation cell. To investigate the influence

f magnetism on the plastic behavior of Cr, we compute all prop-

rties in both the non-magnetic (NM) and the antiferromagnetic

AF) phase. As the AF phase is not the true ground state of Cr, we

rst check that it is a good approximate of the experimental spin

ensity wave which should be more stable below the Néel tem-

erature, as it will be discussed below. Magnetism is treated as

ollinear within spin-polarized DFT. All relaxation calculations are

arried out with fixed periodicity vectors at the equilibrium lattice

arameter determined by minimizing the energy of the BCC unit-

ell as a function of the lattice parameter in a given magnetic state.

he stopping condition is that the remaining forces are less than

 meV/ ̊A on all atoms along all Cartesian directions. In the follow-

ng, we check that this ab initio modeling of Cr gives a good rep-

esentation of the competition between its magnetic phases, their

attice parameters and their elastic behaviors before moving on to

ore complex properties controlling plasticity. 

.2. Stability of magnetic phases 

Neutron diffraction [9] and coherent X-ray diffraction [10] ex-

eriments showed the magnetic ground-state of BCC Cr to be a

pin-density wave (SDW) with incommensurate period regarding

he crystal lattice below its Néel temperature of 311 K. The SDW

orresponds to a quasi-sinusoidal modulation of the magnitude of

he magnetic moments along the propagation of the wave, keeping

 locally antiferromagnetic order ( Fig. 1 b). More precisely, from 0

o 123 K, the SDW is longitudinally polarized with magnetic mo-

ents oriented along a 〈 100 〉 axis of the crystal lattice, roughly

orresponding to a period of 20 lattice parameters [9] . At 123 K,

he polarization of the SDW switches to transverse with magnetic

oments directed perpendicular to its propagation direction, be-

ore vanishing at the Néel temperature. In the following, we exam-
ne more closely the stability of the different magnetic phases of

r. 

We consider the three following magnetic phases: NM, AF and

DW. Before discussing the relative stability of the magnetically

rdered AF and SDW phases of Cr, it is worth noting that the

M phase is found to have the highest energy among the three

 Table 1 ). However, DFT calculations fail to predict the SDW phase

s the ground state and invariably find the AF phase as more stable

t 0 K whatever the exchange and correlation functional and the

FT approximations [20–24] . Indeed, all Vanhoof et al. [20] using

DA + U, Soulairol et al. [21] using both LDA, GGA and mixed LDA-

GA functionals, and Cottenier et al. [24] using the FLAPW method

ith GGA functional, found the SDW to have a higher energy than

he AF phase. 



572 B. Bienvenu, C.C. Fu and E. Clouet / Acta Materialia 200 (2020) 570–580 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

b  

W  

m  

p  

p  

s

2

 

m  

T  

i  

a  

s  

t  

p  

S  

o  

t  

v  

o

 

a  

a

a  

A  

s  

p  

p  

t  

b

3

 

e  

t  

d  

r  

t  

a  

s  

r  

γ

3

 

s  

r  

f  

m  

t  

a  

t  

g  

b  

i

3

 

p  

w  
All three considered magnetic phases in this work are collinear,

the SDW corresponding to a modulation of the spin magnitude,

keeping locally an antiferromagnetic order. Neutron diffraction ex-

periments performed on pure bulk Cr [9] report no evidence of

non-collinear magnetic structures, and confirmed the collinearity

of the SDW gound state of Cr. The theoretical work of Soulairol

et al. [21,23] on the relative stability of the magnetic phases of

Cr revealed the non-collinear spin spirals states to be unstable for

any orientation. This is also reported in the work of Shallcross

et al. [25] within the KKR scheme. These observations motivated

the use of the collinear magnetism approximation in the present

work. Due to finite size of simulation cells, we are not able to

consider the incommensurate SDW found experimentally. We have

to study commensurate structures with periodicity n equal to an

integer number of the lattice parameter a 0 . In the following, we

note � q = 2 π/a 0 [1 − 1 /n ; 0 ; 0] the wave vector of the SDW. To dis-

tinguish between the longitudinal and transverse SDW, spin-orbit

coupling has to be taken into account. Soulairol et al. [21] showed

that the energy difference between the two wave polarizations is

not relevant with respect to DFT uncertainty. Hence we do not con-

sider SDW polarization. The energy difference per atom between

the SDW and the AF phases is presented in Fig. 1 a as a function of

the period n of the wave. 

In agreement with previous ab initio studies [20–22] , our cal-

culations lead to a higher energy for the SDW than the AF phase

for any period n . Its excess energy with respect to the AF phase

varies linearly with the wave vector magnitude 1/ n . This discrep-

ancy with experiment is often attributed to the inner limitations

of DFT [21,22] . However, Vanhoof et al. [20] offers another expla-

nation. Their approach suggests that the stabilization of the SDW

comes from the perturbation of the AF order by the introduction of

nodons corresponding to locally zero magnetic moments and the

associated entropy. The linear behavior of the energy difference be-

tween the SDW and AF phases as a function of � q corresponds to a

nodon excitation energy of 140 meV, in good agreement with the

152 meV nodon energy obtained by Vanhoof et al. [20] . 

The variation of the magnetic moments μi along the propaga-

tion direction of the SDW takes the form of a Fourier series with

only two harmonics 

μi = M 1 sin ( � q · � R i ) + M 3 sin (3 

�
 q · � R i ) + . . . (1)

where M j is the amplitude of the j th term of the Fourier series and
�
 R i is the position of the i th atom along the 〈 100 〉 propagation di-

rection of the SDW. The shape of the wave ( Fig. 1 b) is determined

by the two M 1 and M 3 amplitudes, for which we find M 1 = 1 . 18

and M 3 = 0 . 15 μB for n = 20 . This results in a peak magnetic mo-

ment of 1.05 μB , very close to the AF magnitude of 1.1 μB . How-

ever, these values are twice the experimental one of approximately

0.5 μB at 4.2 K [9] . This overestimation of the magnetic moments

is a well known discrepancy of the GGA-PBE exchange and corre-

lation functional with experiments and is reported in various DFT

studies on the stability of the magnetic phases of Cr [20–22] . We

find lower lattice parameters for the three phases than the exper-

imental value of 2.884 Å at 4.2 K. Still, the equilibrium lattice pa-

rameters of the magnetic AF and SDW phases are closer to the ex-

perimental value than the NM case as reported in Table 1 . The LDA

functional gives a better estimation of magnetic moments, however

the obtained equilibrium lattice parameters deviate more from the

experimental value [21] . 

In the following, we will use the AF phase as an approximate

of the true magnetic state of Cr at low temperature. This choice

is motivated by the impossibility to introduce both a spin density

wave and a structural defect like a stacking fault or a dislocation

in a simulation cell with a reasonable number of atoms. Besides,

following the nodon model of Vanhoof et al. [20] , the SDW ap-

pears as a perturbation of the AF phase, which may justify the va-
idity of our approximate description of the magnetic order of Cr

elow the Néel temperature. Finally, Bacon and Cowlam [26] and

illiams and Street [27] have shown that the AF phase becomes

ore stable than the SDW above roughly 200 K in strained sam-

les containing dislocations, with the Néel temperature of the AF

hase going up to 450 K. It appears therefore fully legitimate to

tudy dislocation properties in this AF phase. 

.3. Elastic properties 

We then evaluate the elastic constants of the three considered

agnetic phases (NM, AF and SDW). The results are shown in

able 1 . The SDW structure has a tetragonal symmetry correspond-

ng to 6 elastic constants, but its anisotropy is very small, with

 maximum discrepancy of 6 GPa between C 11 and C 22 . The pre-

ented results in cubic symmetry are obtained by averaging over

he three [100], [010] and [001] wave directions for a SDW with

eriodicity n = 20 . We note that the obtained values for the AF and

DW magnetic phases are closer to the experimental data at 4.2 K

f Palmer and Lee [28] than the NM phase, particularly regarding

he bulk modulus B . Indeed, magnetism is very sensible to volume

ariation, showing its significant impact on the elastic properties

f Cr at low temperature. 

The elastic constants of the AF and SDW phases are very close,

nd the differences with experimental data mostly come from

n overestimation of C ′ . Most importantly, the shear moduli C ′ 
nd C 44 of these two phases are identical within DFT accuracy.

s screw dislocations do not induce a variation of volume, they

hould have almost identical elastic behaviors in both magnetic

hases. This comforts us in approximating the low temperature ex-

erimental SDW ground state by the AF phase in further calcula-

ions such as stacking faults and dislocation properties, which will

e also computed in the NM phase. 

. Generalized stacking faults 

Before introducing dislocations in the crystal, studying the gen-

ralized stacking faults (GSF) [29] can help to get useful informa-

ion about the ease to shear the crystal in different planes. GSFs

escribe the excess energy per unit surface associated with the

igid shearing of the perfect crystal into two halves by a fault vec-

or � f lying in a given crystallographic plane. The positions of the

toms are allowed to relax only perpendicularly to the plane con-

idered to maintain the fault during relaxation. The map of the

elaxed energies as a function of the fault vector � f is called the

-surface. 

.1. Simulation setup 

We use periodic stackings of crystallographic planes and the

hift in atomic positions by the fault vector is applied to the pe-

iodicity vector perpendicular to the plane to introduce only one

ault per cell and avoid free surfaces. As the dislocations mainly

ove in the {110} planes, the full γ -surface will be studied only for

he {110} planes, but we also consider the projection of the {112}

nd {123} γ -surfaces on a 〈 111 〉 direction, and the projection of

he {100} γ -surface on a 〈 100 〉 direction. We checked the conver-

ence of the GSF energies as a function of the separation distance

etween two faulted planes and chose the parameters presented

n Table 2 for the simulation cells. 

.2. 〈 111 〉 slip mode 

1/2 〈 111 〉 dislocations in BCC metals glide in one of the three

lanes with the largest interplanar distance, {110}, {112} and {123},

ith a prevalence for {110} [30] , which is also observed in the case
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Table 2 

Geometry of the simulation cells used for the GSF cal- 

culations in different crystallographic planes. The num- 

ber of stacked planes n Z corresponds to a separation 

distance d fault between two periodic images of the fault. 

Plane X Y Z n Z d fault 

{110} [11 ̄2 ] [111] [ ̄1 10] 12 6 a 0 
√ 

2 

{112} [ ̄1 10] [111] [11 ̄2 ] 24 4 a 0 
√ 

6 

{100} [100] [010] [001] 40 20 a 0 
{123} [11 ̄1 ] [ ̄5 4 ̄1 ] [123] 28 2 a 0 

√ 

14 

Fig. 2. BCC Cr {110} γ -surfaces: (a) NM phase, (b) AF phase, showing a magnetic 

fault at the Burgers vector � b = 1 / 2 [111] indicated by the green arrows. The orange 

arrows indicate � b = [001] . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Table 3 

Parameters λi defining the pe- 

riodicity vectors of the super- 

cells used for the study of the 

1/2 〈 111 〉 screw dislocation (2) 

corresponding to a number of 

atoms N for a 1 b -high supercell. 

N λ1 λ2 λ3 

135 5/2 9/2 0 

187 17/6 11/2 2/3 

209 19/6 11/2 1/3 

273 7/2 13/2 0 
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f Cr [11,12] . The {110} γ -surfaces for the NM and AF phases are

resented in Fig. 2 with a sampling of 10 points per direction and

 Fourier series interpolation. 

The shape of the γ -surfaces are very similar in both magnetic

hases, except for the introduction of a fault corresponding to the

urgers vector 1/2 [111] in the AF phase. This vector is a periodic-

ty vector of the BCC lattice and there is no excess energy in the

M phase as the perfect BCC lattice is recovered. But � b = 1 / 2 [111]

reaks the AF magnetic order of Cr, thus leading to a magnetic

ault in the AF phase. The minimum corresponding to this mag-

etic fault is better visualized on the γ -line defined as the pro-

ection of this γ -surface in the 〈 111 〉 direction ( Fig. 3 a). The same

 111 〉 γ -lines have been also calculated for the {112} and {123}

ault planes ( Fig. 3 b and c respectively), which exhibit the well

nown twinning / anti-twinning (T/AT) asymmetry [31] . 

A magnetic fault is obtained in all three planes for a fault

ector equal to � b = 1 / 2 [111] . These magnetic faults have very

lose energies per surface unit: γ110 = 16 . 2 , γ112 = 16 . 4 , and γ123 =
6 . 7 meV/ ̊A 

2 . These values are obtained after full relaxation along

ll three Cartesian axis to check the stability of the fault. The mag-

etic fault results from the shearing of the crystal forcing two par-

llel spins to face each other creating a magnetic frustration par-

ially resolved by locally reducing the magnitude of the atom mag-

etic moments. This can also be regarded as an antiphase magnetic

omain wall separating two reversed-magnetization half crystals.

nother possibility to partially resolve this magnetic frustration

ould be by rotating the magnetic moments in the vicinity of

he fault plane. We checked if this configuration was also possi-

le considering the {110} magnetic fault as an example by relaxing

he system taking account of non-collinear magnetism and spin-

rbit coupling. We initialize all magnetic moments along the X

xis of the simulation cell, which is perpendicular to the normal

f the fault plane Z , except for the two closest planes from the

ault, where they are initialized along the Z axis to insert a non-

ollinear perturbation. This initial non-collinear magnetic structure

as found to relax to the same as the collinear one. 
Except for this excess energy at the center of the γ -lines, their

hapes are very similar in the NM and AF phases in all three con-

idered fault planes, indicating a weak influence of magnetism on

he relative ease to shear these planes. Also, regardless of the mag-

etic phase, the peak amplitude and slope of the three 〈 111 〉 γ -

ines are almost identical in all three fault planes. Hence, no par-

icular slip system appears to be easier to activate than any other,

nd {110} does not seem to be the easiest one to shear even if it

s the main experimental slip plane. This shows a fine description

f the structure and mobility of dislocations is required to have a

ood understanding of the mechanisms involved in the plastic de-

ormation of Cr. 

.3. 〈 100 〉 slip mode 

As we are also interested in 〈 100 〉 screw dislocations, it is in-

eresting to look at the generalized stacking fault in the crystallo-

raphic planes containing this 〈 100 〉 direction, i.e. {110} and {100}

lanes. Fig. 4 shows the resulting γ -lines corresponding to this

100] direction for these two planes. 

The 〈 100 〉 γ -line have a lower energy maximum in {110} planes

han in {100} planes in both NM and AF phases, with no magnetic

ault as expected from the magnetic order of Cr. This suggests a

riori an easier glide of 〈 100 〉 dislocations in {110} planes as ob-

erved experimentally [12,13] . However, the shearing of the crys-

al in any direction still induces a minor local frustration of the

tom magnetic moments resulting in higher fault energies in the

F phase, as also observed along 〈 111 〉 directions ( Fig. 3 ). 

. 1/2 〈111 〉 screw dislocation 

As observed in the previous section, stacking fault energies are

nly a first step to rationalize Cr plasticity. A more accurate under-

tanding requires an atomic description of screw dislocation cores. 

.1. Simulation setup 

The geometry of the simulation supercells used for the study

f 1/2 〈 111 〉 screw dislocations have Cartesian directions such that

he {110} glide plane of the dislocations is oriented with its nor-

al along Y ‖ � u 2 = [ ̄1 10] axis, with the glide direction along X ‖
�
  1 = [11 ̄2 ] axis, and the dislocation line along the Z ‖ � u 3 = 1 / 2[111]

xis. The periodicity vectors ( � p 1 , � p 2 , � p 3 ) of the supercells are rep-

esented by 

�
 p 1 = λ1 � u 1 − λ2 � u 2 + λ3 � u 3 

�
 p 2 = λ1 � u 1 + λ2 � u 2 + λ3 � u 3 

�
 p 3 = 

�
 u 3 (2) 

ith the values of λi for the different cell sizes recapitulated in

able 3 . We use a quadrupolar array of dislocation dipoles with

hree-dimensional periodic boundary conditions [31,32] to limit

he elastic interactions between periodic images. In this setup, the

wo dislocations of a same dipole are separated from each other
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Fig. 3. Generalized stacking fault energy along the [111] direction for a (a) {110}, (b) {112}, and (c) {123} fault plane. The blue squares correspond to the NM phase and the 

red circles to the AF phase. The green arrows show the Burgers vector � b = 1 / 2[111] . (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 4. Generalized stacking fault energy along the [100] direction for a (a) {110}, 

and (b) {100} fault plane. The blue squares correspond to the NM phase and the 

red circles to the AF phase. The gold arrows show the Burgers vector � b = [100] . (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Differential displacements map showing the core structure of the 1/2 〈 111 〉 
screw dislocation in the NM phase in (a) easy configuration, (b) hard configura- 

tion. The atoms are represented by different symbols according to their height along 

[111]. An arrow joining two atoms corresponds to a differential displacement of b /3 

along [111], with b = a 0 
√ 

3 / 2 the norm of the Burgers vector. 
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by a vector ( � p 1 + 

�
 p 2 ) / 2 when aligned horizontally, or ( � p 1 − �

 p 2 ) / 2

when aligned vertically. For the NM phase, the supercell is 1 b -high,

with b = a 0 
√ 

3 / 2 , whereas for the AF phase we need to use a 2 b -

high supercell as the Burgers vector is not a periodicity vector of

the AF magnetic order. The dislocations are introduced in the sim-

ulation cells using anisotropic elasticity theory taking full account

of periodicity, with a homogeneous strain applied to the lattice

vectors of the cell to cancel the plastic strain created by the dislo-

cation dipole [31,32] . Atomic positions are then fully relaxed with

fixed periodicity vectors. 

4.2. Core structure 

The structures obtained for the 1/2 〈 111 〉 screw dislocation after

atomic relaxation can be visualized using differential displacement

maps along the 〈 111 〉 direction as introduced by Vitek [33] and

presented in Fig. 5 for the NM phase. 

The core structure is shown in two configurations: the easy

core, which is the ground-state ( Fig. 5 a), and the hard core which

is an unstable maximum ( Fig. 5 b). Both configuration have a com-

pact core as observed in other BCC metals using DFT calculations

[31] . The easy core displays reversed helicity of the three 〈 111 〉
atomic columns in the vicinity of the dislocation center, whereas

the hard core constrains the three columns to be at the same

height. To relax the unstable hard core structure, the coordinates

of the atoms along the Z axis are frozen for the three nearest

atomic columns and all other atoms are allowed to fully relax in
he three Cartesian directions. Differential displacement maps for

he AF phase are presented in Figs. 6 and 7 . 

The dislocation core structure in both easy and hard configura-

ions are the same in the NM and AF phases. The only difference

s the magnetic fault between two dislocations of the same dipole

ue to the Burgers vector not being a periodicity vector of the AF

agnetic order. This fault appears in the region between the dislo-

ations which has been sheared by the Burgers vector to create the

ipole, starting from a perfect crystal. It gives rise to a magnetic

rustration resolved by reducing the magnitude of the atom mag-

etic moments in the vicinity of the fault plane. A different type

f representation is adopted to better visualize this fault where the

iameter of the represented atoms is proportional to its magnetic

oment ( Figs. 6 and 7 ). The magnetic fault is located in either a

110} or {112} plane depending on initial choice for the vector join-

ng the two dislocations of the dipole, ( � p 1 + 

�
 p 2 ) / 2 or ( � p 1 − �

 p 2 ) / 2

espectively. 

The center of a 1/2 〈 111 〉 screw dislocation in its easy or hard

onfiguration is located at the center of gravity of triangles formed

y three adjacent atomic columns along a 〈 111 〉 direction ( Fig. 5 a).

islocations with + b Burgers vector are located at the center of tri-

ngles pointing up, and −b dislocations of triangles pointing down.

ence, the length of the vector joining two dislocation centers in

he Y direction varies by a small amount ±δ = a 0 
√ 

2 / 6 if it links

riangles pointing up and down or down and up, and depending

n the core configurations, easy or hard. This is of no importance

or the NM and AF cases when the fault lies in a {110} plane, but

t changes the structure and length of the {112} magnetic fault

 Fig. 7 ). 
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Fig. 6. Differential displacements map showing the core structure of the 1/2 〈 111 〉 
screw dislocation in the AF phase with the magnetic fault located along a {110} 

plane (a) easy configuration, (b) hard configuration. (c) Magnetic fault in a {110} 

plane for comparison. The diameter of the circles represents the amplitude of the 

magnetic moments on each atomic site. Two touching circles corresponding to the 

bulk DFT value of 1.1 μB . The smallest circles correspond to a magnetic moment of 

0.2 μB . 

Fig. 7. Differential displacements map showing the core structure of the 1/2 〈 111 〉 
screw dislocation in the AF phase with the magnetic fault located along a {112} 

plane: (a) and (b) easy and hard configurations for the up triangles; (c) and (d) for 

the down triangles. (e) Magnetic fault in a {112} plane for comparison. The smallest 

circles correspond to zero magnetic moment. 

Fig. 8. Schematic of the dislocation arrangements to calculate the energy of the 

magnetic fault separating two dislocations of the same dipole. The −b dislocation 

is fixed while the + b dislocation is moved one Peierls valley on the left (1) and on 

the right (2), with λP = a 0 
√ 

2 / 3 the distance between two adjacent Peierls valleys. 
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We also show the structure of the infinite faults as given by

he local minima in the GSFs ( Fig. 3 ) in Figs. 6 c and 7 e in {110}

nd {112} planes respectively. The structure of the infinite fault is

dentical as the one observed for a dislocation dipole laying in a

110} plane, but slightly differs for a {112} plane. In the GSFs, the

ault lies between two adjacent {112} planes so that no magnetic

oment is strictly zero. For the dislocation dipoles, the fault is lo-

ated on a {112} atomic plane resulting in exactly zero magnetic

oments in that plane. Otherwise, the structure of the magnetic

ault is nearly identical for both the easy and the hard core config-

rations, regardless of the orientation of its plane or the setup. 

.3. Core energies 

The total energy E tot of the simulation cells can be partitioned

s 

 

tot = E bulk + E elastic + 2 E core + E fault , (3)

here E bulk is the energy of the perfect unfaulted BCC lattice, E elastic 

s the elastic energy of the dislocation dipole including the inter-

ction between periodic images, E core is the core energy of the dis-

ocations, and E fault is the energy of the magnetic fault. All ener-

ies are normalized by the length of the simulation cell along the

 axis to account for the different cell heights between the NM

nd AF phases. The elastic energy of the dipole is evaluated using

nisotropic elasticity theory with the BABEL package [34] by defin-

ng a core radius r c = b = a 0 
√ 

3 / 2 . 

We first look at the contribution of the magnetic fault which

xists in the AF phase. This fault is assumed to have an energy

 

fault = γ d, with γ the energy of the magnetic fault per surface

nit and d the distance between the two dislocations of the dipole.

his fault energy should be equal to the one determined in the

revious section for an infinite fault plane, which we propose to

heck now. To evaluate γ directly from ab initio modeling of dislo-

ations, we use the method sketched in Fig. 8 . 

When one of the two dislocations is moved from its initial per-

ect quadrupolar position to one Peierls valley on the left or on

he right while keeping the other fixed, the elastic energy of the

ipole is the same as the distance between its periodic images is

nchanged. The core energy should also be the same. Therefore,

he energy difference between the two configurations is only due

o the magnetic fault having different lengths, ± λP with respect

o the quadrupolar arrangement. The energy of the magnetic fault

can then be expressed directly as (E (1) − E (2) ) / 4 bλP . We apply

his procedure only for a magnetic fault located in a {110} plane.

his leads to γ = 16 . 3 meV/ ̊A 

2 , which perfectly agrees with the

alue we obtained from GSF, γ110 = 16 . 2 meV/ ̊A 

2 . The small dif-

erence might be due to boundary effects in the vicinity of the dis-

ocation cores. This shows that whether the fault arises from the

igid shearing of the crystal or from the introduction of disloca-

ions, the same phenomenom is involved, at least for {110} planes.

s very similar values were also obtained for infinite {112} and

123} faults, γ = 16 . 4 and γ = 16 . 7 meV/ ̊A 

2 , the same value
112 123 
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Fig. 9. Convergence of the dislocation core energy with respect to the cell size for 

the NM and AF phases with a magnetic fault located in either a {110} or {112} plane. 

(a) Core energy of the easy core configuration. (b) Energy difference between the 

hard and easy core configurations. The core radius is r c = b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Peierls barrier for a 1/2 〈 111 〉 screw dislocation gliding in a {110} plane for 

the NM and AF phases. For the AF phase, the magnetic fault is located in the glide 

plane, ( ̄1 10 ). The inset shows the differential displacement map for the saddle point 

configuration in the NM phase. The red circled atomic column has a constrained 

displacement along Z in the AF phase. 
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of γ = 16 . 3 meV/ ̊A 

2 will be used in the following for a dislocation

dipole, regardless of the plane of the magnetic fault. 

We then check the convergence of the dislocation core ener-

gies with respect to the simulation cell size with the parameters

of Table 3 . The results are shown in Fig. 9 for both the NM and AF

phases, and for a magnetic fault in the AF phase located in a {110}

and a {112} plane. 

We note that the core energies are almost independent of cell

size and of dipole fault plane for the AF phase. This shows that the

partition of the total energy proposed in Eq. (3) is relevant, with

the elastic and magnetic contributions being well evaluated, lead-

ing to a core energy independent on dislocation environment. We

did not consider larger simulation cells for the AF phase because

the convergence of the core energies is already very good, and the

computational cost of these calculations is 8 times higher than in

the NM phase, with twice the number of atoms and the treatment

of magnetism. As expected, the energy of the hard core configu-

ration is higher than the easy core in both magnetic phases. This

energy difference shows larger variations in the AF phase when

the fault lies in a {112} plane, with a dependence on the disloca-

tion position either in an up or down triangle ( Fig. 9 b). As both

easy and hard core configurations have the same elastic energy,

such a perturbation of the core inevitably arises from an approx-

imate evaluation of the energy contribution of the magnetic fault.

This statement is further supported by our previous observation

that the structure of the {112} magnetic fault in the dislocation

dipole slightly differs from the infinite fault ( Fig. 7 ). We will there-

fore prefer for the AF phase the setup with a magnetic fault lying

in a {110} plane in the following, in particular for the calculation

of the Peierls energy barrier. 

Comparing the results obtained in the NM and AF magnetic

phases, one sees that, once the energy contribution of the mag-

netic fault in the AF phase has been removed, magnetism has only

a marginal impact on dislocation energies. Almost the same core

energies are obtained in the magnetic phases, with only a slightly

smaller energy difference between hard and easy core configura-

tions in the AF than in the NM phase, with 35 instead of 43 meV/ ̊A.

4.4. Peierls energy barrier 

We then determine the Peierls energy barrier opposing the

1/2 〈 111 〉 screw dislocation glide in a {110} plane by moving the

two dislocations of the dipole in the same direction along X from

their initial equilibrium easy configuration to the next nearest, cor-
esponding to the next Peierls valley. This way, the distance be-

ween dislocations does not change during the crossing of the bar-

ier so both the elastic and magnetic fault energies remain con-

tant. This is done in the NM and AF phases using the 135-atom

ell with height 1 b and 2 b respectively. The magnetic fault gen-

rated by the dislocation dipole in the AF phase is located in the

lide plane ( ̄1 10 ). The minimum energy path is found using the

udged elastic band (NEB) method as implemented in the VASP

ode. We use five intermediate images between the initial and fi-

al states, with a spring constant between images of 5 eV/ ̊A. When

erforming the calculation in the AF phase, we observed an asyn-

hronous glide of the two dislocations preventing one from as-

ribing half of the energy variation to each gliding dislocation. To

void this artefact found with the unconstrained NEB calculation,

e performed a second NEB calculation where we constrained the

isplacement of the atomic column circled in red in the inset of

ig. 10 along the Z axis to be the same, in absolute value, for both

 b and −b dislocations. These atomic columns correspond to the

ost displaced atoms during the crossing of the Peierls barrier.

his constraint ensures a synchronous movement of the two dis-

ocations. The resulting barriers are presented in Fig. 10 . 

The barriers in both magnetic phases have the same shape,

ith a higher maximum in the NM phase. The calculation in the

M phase was also carried out using the 187-atom supercell and

e note a very satisfying convergence of the Peierls barrier with

espect to the simulation cell size. The dislocation core structures

long the minimum energy path are the same in the two phases,

nd the magnetic fault a priori does not disrupt the structure of the

islocations along the path. The differential displacement map of

he saddle point configuration in the NM phase is shown in the in-

et of Fig. 10 , which differs from the hard core configuration as the

islocation drifts away from it during the crossing of the Peierls

arrier. Hence the saddle point energy is lower than the energy

ifference between easy and hard configurations. 

. 〈100 〉 screw dislocation 

.1. Simulation setup 

For the study of the 〈 100 〉 screw dislocation, we use a simula-

ion cell containing 200 atoms for both NM and AF phases with
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Fig. 11. Core structure of the 〈 100 〉 screw dislocation in the NM phase: (a) and 

(c) ground state configuration, (b) and (d) metastable configuration. The atoms are 

represented by different symbols according to their height along [001]. (a) and (b) 

show the differential displacement maps. An arrow joining two atoms corresponds 

to a differential displacement of b /2 along [001], with b = a 0 the norm of the 〈 100 〉 
Burgers vector. (c) and (d) show the edge component of the dislocation, i.e. the 

atom displacement projected on the (001) plane. 
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Fig. 12. Peierls barrier for a 〈 100 〉 screw dislocation gliding in a {110} plane for 

the NM and AF phases. The inset shows the differential displacement map for the 

saddle point configuration in the NM phase. 
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eriodicity vectors � p 1 = n [100] , � p 2 = n [010] , and 

�
 p 3 = [001] , with

 = 10 . The crystal is oriented such that X ‖ [ ̄1 ̄1 0] , Y ‖ [1 ̄1 0] , and

 = [001] . The dislocation dipole is introduced in the cell using

nisotropic elasticity following a quadrupolar arrangement. This is

he only cell size considered, corresponding to a dislocation dis-

ance equivalent to the 187-atom cell for the study of the 1/2 〈 111 〉
crew dislocation. We infer that this size is large enough to ensure

onvergence of the properties of interest as the dislocation core

tructure is also compact. 

.2. Core structure and energy 

The dislocation core structure is presented in Fig. 11 for the NM

hase. We consider two positions for the dislocation, one leading

o the ground state where the dislocation is located at the cen-

er of four 〈 100 〉 atomic columns along the Z axis, and another

ne leading to a configuration with higher energy with the disloca-

ion located between two atomic columns along a {110} plane. We

ill show in the following that the latter actually coincides with

he saddle point configuration when the dislocation is gliding in a

110} plane. 

We find a compact core structure for both configurations, with

o spreading. The core structures in the two considered configu-

ations are identical in the NM and AF phases, with no magnetic

ault introduced in the system as � b = 〈 100 〉 is a periodicity vector

f the AF magnetic order. The edge component of the dislocations

 Fig. 11 c and d) show a slight dilatation in the vicinity of the dis-

ocation center. The core energy of this 〈 100 〉 screw dislocation is

.718 and 0.737 eV/ ̊A in the NM and AF phases respectively, using

he same core radius r c = a 0 
√ 

3 / 2 as for the 1/2 〈 111 〉 dislocation.

he energy of the metastable configuration, defined with respect

o the ground state, is respectively 25 and 20 meV/ ̊A in the NM

nd AF phases. 

.3. Peierls energy barrier 

We then determine the Peierls energy barrier opposing the

 100 〉 screw dislocation glide in a {110} plane using the NEB
ethod by moving the two dislocations of the dipole along the X

xis in the same direction from their initial stable core position to

he next nearest along the glide direction. The results are shown

n Fig. 12 . We did not consider glide in {100} planes as the dislo-

ations would have to cross a 〈 100 〉 atomic column and no exper-

mental observation report such glide plane. 

The barriers have the same shape in both phases, with only a

ower energy maximum in the AF phase. The heights of these en-

rgy barriers are equal in both cases to the energy difference be-

ween the metastable configuration and the ground state identified

n the previous section. Along the minimum energy path, the dis-

ocation structures are identical in both phases. We show in the

nset of Fig. 12 the configuration of the dipole at the saddle point

n the NM phase, which corresponds to the metastable configura-

ion of Fig. 11 b. 

. Discussion 

.1. Magnetic fault for 1/2 〈 111 〉 dislocations 

We begin this section by discussing the consequences of mag-

etism in the AF phase on the properties and mobility of the

/2 〈 111 〉 screw dislocation. The main effect of magnetism is the

xistence of a magnetic fault created by the 1/2 〈 111 〉 dislocation

n its glide plane. This fault exerts a force on the dislocation which

eeds to be equilibrated by an applied stress. This stress is given

y τ = γ /b, with γ = 16 . 3 meV/ ̊A 

2 the energy of the magnetic

ault, leading to a back-stress τ = 1 GPa, for a dislocation gliding

n {110} planes. This stress is too high to allow for the existence

f isolated 1/2 〈 111 〉 dislocations carrying magnetic faults. Indeed,

o such magnetic fault has been reported in TEM observations of

ulk BCC Cr strained under its Néel temperature [11,12] , in agree-

ent with the associated high energy cost. Such magnetic faults

ounded by a dislocation have been observed only on surfaces,

ith both the magnetic fault and the bounding dislocation ending

p at the surface [15,16] . 

The magnetic fault therefore needs to be closed by another

opological defect. This constrains 1/2 〈 111 〉 dislocations to coexist

airwise, leading to a super-dislocation dissociated into two par-

ial dislocations separated by a magnetic fault. Considering the dif-

erent vectors of the 1/2 〈 111 〉 family, one obtains such a super-

islocation with 〈 111 〉 , 〈 110 〉 , or 〈 100 〉 Burgers vectors. 
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〈 111 〉 super-dislocations are the result of two partial disloca-

tions with the same 1/2 〈 111 〉 Burgers vector, following the reaction

1 / 2 [111] + MF + 1 / 2 [111] → [111] , with MF the magnetic fault. The

dissociated configuration corresponding to two 1/2 〈 111 〉 disloca-

tions separated by a magnetic fault is energetically more favor-

able than the single 〈 111 〉 dislocation, and if there was no mag-

netic fault as in the NM or the disordered paramagnetic phases,

the two partial dislocations would glide apart at an infinite equilib-

rium distance. The magnetic fault in the AF phase prevents infinite

separation. We can evaluate the equilibrium dissociation distance

between 1/2 〈 111 〉 partial dislocations using elasticity theory, with

the following expression for the energy variation arising from the

dissociation 

�E diss (d) = −b (1) 
i 

K i j b 
(2) 
j 

ln 

d 

r c 
+ γ d, (4)

where d is the dissociation distance, b (1) and b (2) are the Burg-

ers vectors of the two partial dislocations (with b (1) = b (2) in this

case), K is the Stroh tensor depending on the elastic constants and

on the orientation of the dislocation line vector, r c is the core ra-

dius, and γ is the energy of the magnetic fault. The equilibrium

dissociation distance d eq is found by minimizing the above expres-

sion (4) with respect to d , which gives 

d eq = 

b (1) 
i 

K i j b 
(2) 
j 

γ
. (5)

For the screw orientation of the 〈 111 〉 dislocation, an analytic ex-

pression can be obtained for the Stroh tensor, leading to 

d eq = 

√ 

C ′ C 44 b 
2 

2 π γ
, (6)

with b = a 0 
√ 

3 / 2 . Using the values of Table 1 for the AF phase and

γ = 16 . 3 meV/ ̊A 

2 for the magnetic fault energy, we find d eq = 55 Å

as the equilibrium dissociation distance of the 〈 111 〉 screw disloca-

tion. Depending on its orientation, the dissociation distance ranges

from 54 to 59 Å, a small variation which is due to the compen-

sation between the effects of dislocation character and of elastic

anisotropy of AF Cr. This dissociation distance is short, thus po-

tentially explaining why no TEM observation has reported such a

dissociation until now. The total Burgers vector of this dislocation

is 〈 111 〉 , which cannot be easily distinguished experimentally from

the usual 1/2 〈 111 〉 vector known in BCC metals. TEM observation

using the extinction method, i.e. � g · � b contrast, which concluded to

1/2 〈 111 〉 Burgers vector in AF Cr [11–13] are also compatible with

〈 111 〉 dislocations. This is also true when the Burgers vector is de-

termined from the screw orientation defined as the intersection of

cross-slipped planes. 

1/2 〈 111 〉 dislocations can also be combined to form 〈 100 〉 dislo-

cations, following the scheme 1 / 2 [111] + MF + 1 / 2 [1 ̄1 ̄1 ] → [100] .

The dissociation of 〈 100 〉 dislocations corresponding to the reverse

reaction is unstable: the elastic coefficient b (1) 
i 

K i j b 
(2) 
j 

appearing in

Eq. (5) is negative for all dislocation characters, both in the NM

and AF phases. This agrees with the compact core found for the

screw orientation in our ab initio calculations. Thus, no magnetic

fault is created by dissociation of 〈 100 〉 dislocations. 

The last possibility is the creation of 〈 110 〉 dislocations, follow-

ing the reaction 1 / 2 [111] + MF + 1 / 2 [11 ̄1 ] → [110] . The reverse re-

action corresponding to the dissociation of 〈 110 〉 dislocations into

two 1/2 〈 111 〉 partial dislocations is energetically more favorable for

any orientation, leading to a dissociation distance in the AF phase

varying from 12 Å for the screw orientation to 31 Å for the edge

orientation. However, this 〈 110 〉 dislocation can also dissociate in

two 〈 100 〉 dislocations, [110] → [100] + [100] , without the creation

of any magnetic fault as 〈 100 〉 Burgers vectors are periodicity vec-

tor of the magnetic order of the AF phase. This reaction is energet-

ically favorable for dislocation characters between 45 ◦ and edge,
howing that 〈 110 〉 dislocations are unstable for such orientations.

his probably explains why no TEM observation has reported the

resence of such 〈 110 〉 dislocations which may only exist as junc-

ions. 

.2. Competition between 1/2 〈 111 〉 and 〈 100 〉 
As noted by Reid [35] , 〈 100 〉 and 1/2 〈 111 〉 dislocations have a

lose elastic energy in Cr as a result of its strong elastic anisotropy.

ith an anisotropy coefficient A = C 44 /C ′ equal to 0.59 and 0.52

espectively in the NM and AF phases, this is true for both mag-

etic phases. Although our ab initio calculations lead to larger core

nergies for 〈 100 〉 than for 1/2 〈 111 〉 screw dislocations, both dislo-

ations appear relevant to rationalize plasticity in BCC Cr, as con-

rmed by experimental observations [11–13] which report activity

or both 1/2[111] {110} and [100] {110} slip systems. We now focus

n the competition between these two slip systems, comparing the

attice friction opposing glide of 1/2 〈 111 〉 and 〈 100 〉 screw disloca-

ions. 

From our ab initio calculations, we find the structural properties

f the two investigated types of screw dislocations to be weakly

nfluenced by magnetism, except for the existence of a magnetic

ault for the 1/2 〈 111 〉 screw dislocations in the AF phase as dis-

ussed in the previous section. We obtain lower energy barriers

pposing dislocation glide in {110} planes for 〈 100 〉 screw disloca-

ions than for 1/2 〈 111 〉 in both phases. Also, the saddle point en-

rgy is lower in the AF phase for both 1/2 〈 111 〉 and 〈 100 〉 screw

islocations, indicating easier glide of dislocations in the AF than

n the NM phase. 

From the calculated Peierls barriers opposing dislocation glide

n {110} planes, we can evaluate the Peierls stress τ P for the inves-

igated slip systems as 

P = 

1 

b 
max 

x D 

∂E P (x D ) 

∂x D 
, (7)

here E P is the Peierls potential, x D is the dislocation position in

he glide plane, and b is the norm of the Burgers vector. From the

EB calculations presented in Figs. 10 and 12 for 1/2 〈 111 〉 and

 100 〉 screw dislocations respectively, the Peierls potential E P is

nown as a function of a reaction coordinate ξ along the minimum

nergy path from one Peierls valley to the next nearest. However,

he dislocation position is required in the above expression (7) for

he evaluation of the Peierls stress. As a first approximation, we as-

ume that the dislocation position varies linearly with the reaction

oordinate ξ between two adjacent Peierls valleys separated by a

istance λP as x D = ξλP . More precise definitions of the disloca-

ion positions from the stress variation are available [31,32,36,37] ,

ut they require a different setup for the NEB calculations than

he one used in Sections 4.4 and 5.3 . Upon crossing of the barrier,

/2 〈 111 〉 dislocations have to travel a higher distance than 〈 100 〉 ,
amely a 0 

√ 

6 / 3 and a 0 
√ 

2 / 2 . We replot the Peierls barriers for the

wo considered systems in both phases in Fig. 13 as a function of

he approximated dislocation position. 

The Peierls stresses τ P obtained from Eq. (7) for 1/2 〈 111 〉 {110}

nd 〈 100 〉 {110} slip systems are 2.3 and 2.2 GPa respectively in

he NM phase, and 2.1 and 1.8 GPa in the AF phase. We insist that

hese should be regarded as a rough estimation of the ab initio

eierls stresses. Still, we find a close value for 〈 100 〉 and 1/2 〈 111 〉
crew dislocations in both phases, indicating overall an as easy

lide for 〈 100 〉 and 1/2 〈 111 〉 dislocations. The difference between

he two Peierls stresses is larger in the AF phase, in favor of an

asier glide of 〈 100 〉 dislocations. But we have not considered here

hat 1/2 〈 111 〉 dislocations need to be paired in the AF phase, lead-

ng to 〈 111 〉 super-dislocations and probably lowering the associ-

ted Peierls stress. 
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Fig. 13. Peierls energy barriers for 1/2 〈 111 〉 and 〈 100 〉 screw dislocations gliding 

in a {110} plane in NM and AF phases as a function of the dislocation position 

x D = ξλP . 
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. Conclusion 

This work investigates the impact of magnetism on the struc-

ural properties and mobility of screw dislocations in BCC Cr. We

emonstrate the AF magnetic phase to be a good approximate of

he SDW experimental ground state based on elastic and magnetic

rder considerations. The study of the generalized stacking fault

nergies along 〈 111 〉 directions revealed the introduction of a mag-

etic fault when the crystal is sheared in the AF phase by 1/2 〈 111 〉
n the three close-packed crystallographic planes {110}, {112} and

123} of the BCC lattice. As a consequence, 1/2 〈 111 〉 dislocations

ntroduce a magnetic fault when shearing the crystal. Except for

he introduction of this magnetic fault, our ab initio modeling of

he 1/2 〈 111 〉 screw dislocation evidences no structural difference

etween dislocation cores in the NM and AF phases, with also

lose core energies and Peierls energy barriers in the two mag-

etic phases. The main consequence of magnetism is the neces-

ity for 1/2 〈 111 〉 dislocations to coexist and move pairwise, leading

o super-dislocations with 〈 111 〉 Burgers vectors dissociated in two

artial dislocations separated by a magnetic fault. 

〈 100 〉 screw dislocations are found stable, with a compact core

n both magnetic phases. The Peierls energy barrier opposing their

lide in {110} planes has a slightly lower maximum than for

/2 〈 111 〉 in both magnetic phases, leading to comparable Peierls

tresses for the two dislocations. Our ab initio study therefore

emonstrates that both 〈 111 〉 {110} systems and 〈 100 〉 {110} have

o be considered to describe Cr plasticity, in agreement with ex-

eriments showing activity for these two slip systems. 
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